(DT LTI System Part a)
(DT LTI System Part a)
Line 10: Line 10:
 
:::<math> = {1 \over 1 - e^{-jw-1}}</math><br><br><br>
 
:::<math> = {1 \over 1 - e^{-jw-1}}</math><br><br><br>
 
Applying this to y[n],<br><br>
 
Applying this to y[n],<br><br>
<math> y[n] = 1 + H(e^{{2\pi \over N}})e^{j({2\pi \over N})n}[{1 \over 2j}+{5 \over 2}]
+
<math> y[n] = 1 + H(e^{j{2\pi \over N}})e^{j({2\pi \over N})n}[{1 \over 2j}+{5 \over 2}] + H(e^{-j{2\pi \over N}})e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j2({2\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j2({2\pi \over N}n)}</math>

Revision as of 18:01, 26 September 2008

Preview

   This is only a preview; changes have not yet been saved! (????)

DT LTI System Part a



$ h[n] = e^{-n}u[n] $

and the input signal,

$ x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j2({2\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j2({2\pi \over N}n)} $


$ H(e^{jw}) = \sum_{k=0}^{\infty} e^{-n}e^{-jwn} = \sum_{k=0}^{\infty} e^{(-jw-1)n} $


$ = \sum_{k=0}^{\infty} [e^{(-jw-1)}]^n $


$ = {1 \over 1 - e^{-jw-1}} $


Applying this to y[n],

$ y[n] = 1 + H(e^{j{2\pi \over N}})e^{j({2\pi \over N})n}[{1 \over 2j}+{5 \over 2}] + H(e^{-j{2\pi \over N}})e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j2({2\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j2({2\pi \over N}n)} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett