Line 13: Line 13:
 
y(t) = x(t)*H(t)
 
y(t) = x(t)*H(t)
  
<math>y(t) = (2e^{3j\omega})*\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t}</math>
+
<math>y(t) = (2e^{3j\omega})*(\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t})</math>

Latest revision as of 17:08, 26 September 2008

Given the system $ y(t) = 2x(t+3)\, $

$ x(t)= 2\delta(t+3) $

Then find the response to $ x(t) = cos(4t) + sin(2t)\, $

$ x(t)=\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t} $

$ H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $

$ H(j\omega)=\int_{-\infty}^\infty (2\delta(\tau+3))e^{-j\omega\tau}d\tau $

y(t) = x(t)*H(t)

$ y(t) = (2e^{3j\omega})*(\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t}) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett