(23 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Obtain the input impulse response h(t) and the system function H(s) of your system==
 
==Obtain the input impulse response h(t) and the system function H(s) of your system==
A very simple one:
+
A very simple system:
 +
<br><br>
 +
<math>y(t)=x(t)\,</math>  and  <math>x(t)=\delta(t)\,</math>
 +
<br><br>
 +
We can get <math>h(t)=\delta(t)\,</math>
 +
<br><br>
 +
<math>y(t) = \int^{\infty}_{-\infty} \delta(t) dt\,</math><br>
 
<br>
 
<br>
<math>y(t)=\int_{-\infty}^{\infty}x(t)dt</math>
+
<math>H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau</math><br>
 
<br>
 
<br>
We can get <math>h(t)=u(t)\,</math>
+
<math>H(s)=\int_{-\infty}^{\infty}u(\tau)e^{-s\tau}d\tau</math><br>
 
<br>
 
<br>
 +
<math>H(s)=\int_{0}^{\infty}e^{-s\tau}d\tau</math><br>
 +
<br>
 +
<math>H(s)=-se^{-s\tau}|_0^\infty \,</math><br>
 +
<br>
 +
<math>H(s)=-s(e^{-\infty} - e^{0})\,</math><br>
 +
<br>
 +
<math>H(s)=s\,</math><br>
  
 
==Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal==
 
==Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal==
 +
 +
Signal defined in Question 1:
 +
<math>x(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\,</math><br>
 +
<br>
 +
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
 +
 +
<math>y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\,</math>
 +
 +
From Question 1:
 +
<math>x(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\,</math><br>
 +
With this expression we can conclude:<br>
 +
<math>a_1 = 3\,</math><br>
 +
<math>a_{-1} = 3\,</math><br>
 +
<math>a_2 = 4\,</math><br>
 +
<math>a_{-2} = -4\,</math><br>
 +
 +
<math>x(t) = 3H(s)e^{j2\pi t}+3H(s)e^{-j2\pi t} + 4H(s)e^{j4\pi t}-4H(s)e^{-j4\pi t}\,</math><br>
 +
 +
<math>x(t) = 3j\omega_0e^{j2\pi t}+3j\omega_0e^{-j2\pi t} + 4j\omega_0e^{j4\pi t}-4j\omega_0e^{-j4\pi t}\,</math><br>
 +
 +
<math>\omega_0\,</math> value as the base frequency is 2
 +
 +
<math>x(t) = 6je^{j2\pi t}+6je^{-j2\pi t} + 8je^{j4\pi t}-8je^{-j4\pi t}\,</math><br>

Latest revision as of 08:25, 26 September 2008

Obtain the input impulse response h(t) and the system function H(s) of your system

A very simple system:

$ y(t)=x(t)\, $ and $ x(t)=\delta(t)\, $

We can get $ h(t)=\delta(t)\, $

$ y(t) = \int^{\infty}_{-\infty} \delta(t) dt\, $

$ H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{-\infty}^{\infty}u(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{0}^{\infty}e^{-s\tau}d\tau $

$ H(s)=-se^{-s\tau}|_0^\infty \, $

$ H(s)=-s(e^{-\infty} - e^{0})\, $

$ H(s)=s\, $

Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal

Signal defined in Question 1: $ x(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\, $

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

$ y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\, $

From Question 1: $ x(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\, $
With this expression we can conclude:
$ a_1 = 3\, $
$ a_{-1} = 3\, $
$ a_2 = 4\, $
$ a_{-2} = -4\, $

$ x(t) = 3H(s)e^{j2\pi t}+3H(s)e^{-j2\pi t} + 4H(s)e^{j4\pi t}-4H(s)e^{-j4\pi t}\, $

$ x(t) = 3j\omega_0e^{j2\pi t}+3j\omega_0e^{-j2\pi t} + 4j\omega_0e^{j4\pi t}-4j\omega_0e^{-j4\pi t}\, $

$ \omega_0\, $ value as the base frequency is 2

$ x(t) = 6je^{j2\pi t}+6je^{-j2\pi t} + 8je^{j4\pi t}-8je^{-j4\pi t}\, $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch