Line 23: Line 23:
  
 
Signal defined in Question 1:
 
Signal defined in Question 1:
<math>X(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\,</math><br>
+
<math>x(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\,</math><br>
 
<br>
 
<br>
 
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
 
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
  
 
<math>y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\,</math>
 
<math>y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\,</math>

Revision as of 08:18, 26 September 2008

Obtain the input impulse response h(t) and the system function H(s) of your system

A very simple system:

$ y(t)=x(t)\, $ and $ x(t)=\delta(t)\, $

We can get $ h(t)=\delta(t)\, $

$ y(t) = \int^{\infty}_{-\infty} \delta(t) dt\, $

$ H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{-\infty}^{\infty}u(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{0}^{\infty}e^{-s\tau}d\tau $

$ H(s)=-se^{-s\tau}|_0^\infty \, $

$ H(s)=-s(e^{-\infty} - e^{0})\, $

$ H(s)=s\, $

Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal

Signal defined in Question 1: $ x(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\, $

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

$ y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\, $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman