Line 1: Line 1:
 
==Obtain the input impulse response h(t) and the system function H(s) of your system==
 
==Obtain the input impulse response h(t) and the system function H(s) of your system==
 
A very simple system:
 
A very simple system:
<br>
+
<br><br>
 
<math>y(t)=x(t)\,</math>  and  <math>x(t)=\delta(t)</math>
 
<math>y(t)=x(t)\,</math>  and  <math>x(t)=\delta(t)</math>
 
<br><br>
 
<br><br>
 
We can get <math>h(t)=\delta(t)\,</math>
 
We can get <math>h(t)=\delta(t)\,</math>
<br>
+
<br><br>
 
<math>y(t) = \int^{\infty}_{-\infty} \delta(t) dt\,</math><br>
 
<math>y(t) = \int^{\infty}_{-\infty} \delta(t) dt\,</math><br>
 
<br>
 
<br>

Revision as of 08:15, 26 September 2008

Obtain the input impulse response h(t) and the system function H(s) of your system

A very simple system:

$ y(t)=x(t)\, $ and $ x(t)=\delta(t) $

We can get $ h(t)=\delta(t)\, $

$ y(t) = \int^{\infty}_{-\infty} \delta(t) dt\, $

$ H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{-\infty}^{\infty}u(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{0}^{\infty}e^{-s\tau}d\tau $

$ H(s)=-se^{-s\tau}|_0^\infty \, $

$ H(s)=-s(e^{-\infty} - e^{0})\, $

$ H(s)=s\, $

Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal

Signal defined in Question 1: $ X(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang