(New page: <math>\ y(t) = 4x(t-1)</math> <math>\ h(t) = 4d(t-1)</math> <math>\ H(s) = \int^{\infty}_{-\infty} h(t)e^{-st}dt</math> <math>\ H(s) = \int^{\infty}_{-\infty} 4d(t-1)e^{-st}dt</math> ...)
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
== get h(t), H(s), and H(jw) ==
 +
 
<math>\ y(t) =  4x(t-1)</math>
 
<math>\ y(t) =  4x(t-1)</math>
  
Line 10: Line 12:
  
 
<math>\ H(jw) = 4e^{-jw}</math>
 
<math>\ H(jw) = 4e^{-jw}</math>
 +
 +
== get the response of H(s) to signal proposed in previous question ==
  
 
<math> y(t) = \sum_{k = -\infty}^{\infty} a_k H(jkw) (sin(4\pi t) + sin(6\pi t)) \!</math>
 
<math> y(t) = \sum_{k = -\infty}^{\infty} a_k H(jkw) (sin(4\pi t) + sin(6\pi t)) \!</math>
 +
 +
<math> y(t) = \sum_{k = -\infty}^{\infty} a_k 4e^{-jw} (sin(4\pi t) + sin(6\pi t)) \!</math>
 +
 +
from before:
 +
 +
<math> a_5 = \frac{-1}{4}, a_-5 = \frac{-1}{4},a_1 = \frac{1}{4},a_-1 = \frac{1}{4}</math>
 +
 +
 +
<math>y(t) = \frac{1}{4}4e^{-jw} - \frac{1}{4}4e^{-jw} + \frac{1}{4}4e^{-jw} - \frac{1}{4}4e^{-jw}</math>
 +
 +
<math>\ y(t) = 0</math>

Latest revision as of 14:19, 26 September 2008

get h(t), H(s), and H(jw)

$ \ y(t) = 4x(t-1) $

$ \ h(t) = 4d(t-1) $

$ \ H(s) = \int^{\infty}_{-\infty} h(t)e^{-st}dt $

$ \ H(s) = \int^{\infty}_{-\infty} 4d(t-1)e^{-st}dt $

$ \ H(s) = 4e^{-s} $

$ \ H(jw) = 4e^{-jw} $

get the response of H(s) to signal proposed in previous question

$ y(t) = \sum_{k = -\infty}^{\infty} a_k H(jkw) (sin(4\pi t) + sin(6\pi t)) \! $

$ y(t) = \sum_{k = -\infty}^{\infty} a_k 4e^{-jw} (sin(4\pi t) + sin(6\pi t)) \! $

from before:

$ a_5 = \frac{-1}{4}, a_-5 = \frac{-1}{4},a_1 = \frac{1}{4},a_-1 = \frac{1}{4} $


$ y(t) = \frac{1}{4}4e^{-jw} - \frac{1}{4}4e^{-jw} + \frac{1}{4}4e^{-jw} - \frac{1}{4}4e^{-jw} $

$ \ y(t) = 0 $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010