(CT LTI system)
(CT LTI system Part b)
 
(3 intermediate revisions by the same user not shown)
Line 9: Line 9:
  
 
== CT LTI system Part b ==
 
== CT LTI system Part b ==
<math>y(t) = \sum_{i=m}^n x_i = x_m + x_{m+1} + x_{m+2} +\dots+ x_{n-1} + x_n. </math>
+
Rewriting the periodic signal in Question 1, <br><br>
 +
:<math> x(t) = 1 + sin(w_0 t) + 3cos(2w_0 t + {\pi \over 4})  </math><br><br>
 +
 
 +
:<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) [e^{j 2w_0 t}]+ {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) [e^{-j 2w_0 t}]</math><br><br>
 +
 
 +
:<math>x(t) = \sum_{k=-2}^2 a_ke^{jkw_0 t} </math><br><br>
 +
Now, calculating y(t) <br><br>
 +
:<math> y(t) = \sum_{k={-2}}^2 b_ke^{jk w_0 t} </math><br><br>
 +
with <math> b_k = a_k H(jkw_0) </math>, so that<br><br>
 +
 
 +
<math> b_0 = 1 </math><br><br><math> b_1 = {1 \over 2j}({1 \over 1+jw_0}) </math><br><br><math> b_{-1} = {-1 \over 2j}({1 \over 1-jw_0})</math><br><br><math> b_2 = {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}})({1 \over 1 + j2w_0}) </math><br><br><math> b_{-2} = {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}})({1 \over 1 - j2w_0}) </math><br><br>
 +
:<math> y(t) = 1 + {1 \over 2j}({1 \over 1+jw_0})e^{jw_0t} - {1 \over 2j}({1 \over 1-jw_0})e^{-jw_0t} + {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}})({1 \over 1 + j2w_0})e^{j2w_0t} + {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}})({1 \over 1 - j2w_0})e^{-j2w_0t}

Latest revision as of 17:34, 26 September 2008

Preview

   This is only a preview; changes have not yet been saved! (????)

CT LTI system Part a

$ h(t) = e^{-t}u(t) $

$ H(jw) = \int_0^{\infty} e^{-\tau}e^{-jw{\tau}}\,d{\tau} $
$ = [-{1 \over 1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 $

$ = {1 \over 1+ jw} $



CT LTI system Part b

Rewriting the periodic signal in Question 1,

$ x(t) = 1 + sin(w_0 t) + 3cos(2w_0 t + {\pi \over 4}) $

$ x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) [e^{j 2w_0 t}]+ {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) [e^{-j 2w_0 t}] $

$ x(t) = \sum_{k=-2}^2 a_ke^{jkw_0 t} $

Now, calculating y(t)

$ y(t) = \sum_{k={-2}}^2 b_ke^{jk w_0 t} $

with $ b_k = a_k H(jkw_0) $, so that

$ b_0 = 1 $

$ b_1 = {1 \over 2j}({1 \over 1+jw_0}) $

$ b_{-1} = {-1 \over 2j}({1 \over 1-jw_0}) $

$ b_2 = {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}})({1 \over 1 + j2w_0}) $

$ b_{-2} = {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}})({1 \over 1 - j2w_0}) $

$ y(t) = 1 + {1 \over 2j}({1 \over 1+jw_0})e^{jw_0t} - {1 \over 2j}({1 \over 1-jw_0})e^{-jw_0t} + {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}})({1 \over 1 + j2w_0})e^{j2w_0t} + {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}})({1 \over 1 - j2w_0})e^{-j2w_0t} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva