(New page: Given the following system <math>\,s(t)=6x(t-2)-5x(t)\,</math> == Part A == Find the system's unit impulse response <math>\,h(t)\,</math> and system function <math>\,H(s)\,</math>. =...)
 
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
Given the following system
+
Given the following LTI CT system
  
 
<math>\,s(t)=6x(t-2)-5x(t)\,</math>
 
<math>\,s(t)=6x(t-2)-5x(t)\,</math>
Line 7: Line 7:
  
 
Find the system's unit impulse response <math>\,h(t)\,</math> and system function <math>\,H(s)\,</math>.
 
Find the system's unit impulse response <math>\,h(t)\,</math> and system function <math>\,H(s)\,</math>.
 +
 +
 +
The unit impulse response is simply (plug a <math>\,\delta(t)\,</math> into the system)
 +
 +
<math>\,h(t)=6\delta(t-2)-5\delta(t)\,</math>
 +
 +
 +
The system function is found using the following formula (for LTI systems)
 +
 +
<math>\,H(s)=\int_{-\infty}^{\infty}h(t)e^{-st}dt\,</math>
 +
 +
<math>\,H(s)=\int_{-\infty}^{\infty}(6\delta(t-2)-5\delta(t))e^{-st}dt\,</math>
 +
 +
<math>\,H(s)=6\int_{-\infty}^{\infty}\delta(t-2)e^{-st}dt - 5\int_{-\infty}^{\infty}\delta(t)e^{-st}dt\,</math>
 +
 +
using the sifting property
 +
 +
<math>\,H(s)=6e^{-2s}-5e^{0}\,</math>
 +
 +
<math>\,H(s)=6e^{-2s}-5\,</math>
  
  
 
== Part B ==
 
== Part B ==
  
Compute the system's response to
+
Compute the system's response to (from problem 1 [[HW4.1 Jeff Kubascik_ECE301Fall2008mboutin]])
  
 
<math>\,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\,</math>
 
<math>\,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\,</math>
 +
 +
 +
Using the Fourier coefficients determined in problem 1, we can express the system's response to <math>\,x(t)\,</math> as
 +
 +
<math>\,y(t)=\sum_{k=-\infty}^{\infty}a_kH(jkw_o)e^{jkw_ot}\,</math>
 +
 +
<math>\,y(t)=-\frac{3\pi}{8}H(j(-3)(\frac{3\pi}{4}))e^{j(-3)(\frac{3\pi}{4})} - \frac{3\pi}{8}H(j(-1)(\frac{3\pi}{4}))e^{j(-1)(\frac{3\pi}{4})} - \frac{3\pi}{8}H(j(1)(\frac{3\pi}{4}))e^{j(1)(\frac{3\pi}{4})} - \frac{3\pi}{8}H(j(3)(\frac{3\pi}{4}))e^{j(3)(\frac{3\pi}{4})}\,</math>
 +
 +
<math>\,y(t)=-\frac{3\pi}{8}H(-j\frac{9\pi}{4})e^{-j\frac{9\pi}{4}} - \frac{3\pi}{8}H(-j\frac{3\pi}{4})e^{-j\frac{3\pi}{4}} - \frac{3\pi}{8}H(j\frac{3\pi}{4})e^{j\frac{3\pi}{4}} - \frac{3\pi}{8}H(j\frac{9\pi}{4})e^{j\frac{9\pi}{4}}\,</math>
 +
 +
<math>\,y(t)=-\frac{3\pi}{8}(6e^{j\frac{9\pi}{2}}-5)e^{-j\frac{9\pi}{4}} - \frac{3\pi}{8}(6e^{j\frac{3\pi}{2}}-5)e^{-j\frac{3\pi}{4}} - \frac{3\pi}{8}(6e^{-j\frac{3\pi}{2}}-5)e^{j\frac{3\pi}{4}} - \frac{3\pi}{8}(6e^{-j\frac{9\pi}{2}}-5)e^{j\frac{9\pi}{4}}\,</math>
 +
 +
<math>\,y(t)=-\frac{3\pi}{8}(6j-5)e^{-j\frac{9\pi}{4}} - \frac{3\pi}{8}(-6j-5)e^{-j\frac{3\pi}{4}} - \frac{3\pi}{8}(6j-5)e^{j\frac{3\pi}{4}} - \frac{3\pi}{8}(-6j-5)e^{j\frac{9\pi}{4}}\,</math>
 +
 +
<math>\,y(t)=-\frac{3\pi}{8}(6j-5)e^{-j\frac{9\pi}{4}} + \frac{3\pi}{8}(6j+5)e^{-j\frac{3\pi}{4}} - \frac{3\pi}{8}(6j-5)e^{j\frac{3\pi}{4}} + \frac{3\pi}{8}(6j+5)e^{j\frac{9\pi}{4}}\,</math>

Latest revision as of 18:11, 25 September 2008

Given the following LTI CT system

$ \,s(t)=6x(t-2)-5x(t)\, $


Part A

Find the system's unit impulse response $ \,h(t)\, $ and system function $ \,H(s)\, $.


The unit impulse response is simply (plug a $ \,\delta(t)\, $ into the system)

$ \,h(t)=6\delta(t-2)-5\delta(t)\, $


The system function is found using the following formula (for LTI systems)

$ \,H(s)=\int_{-\infty}^{\infty}h(t)e^{-st}dt\, $

$ \,H(s)=\int_{-\infty}^{\infty}(6\delta(t-2)-5\delta(t))e^{-st}dt\, $

$ \,H(s)=6\int_{-\infty}^{\infty}\delta(t-2)e^{-st}dt - 5\int_{-\infty}^{\infty}\delta(t)e^{-st}dt\, $

using the sifting property

$ \,H(s)=6e^{-2s}-5e^{0}\, $

$ \,H(s)=6e^{-2s}-5\, $


Part B

Compute the system's response to (from problem 1 HW4.1 Jeff Kubascik_ECE301Fall2008mboutin)

$ \,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\, $


Using the Fourier coefficients determined in problem 1, we can express the system's response to $ \,x(t)\, $ as

$ \,y(t)=\sum_{k=-\infty}^{\infty}a_kH(jkw_o)e^{jkw_ot}\, $

$ \,y(t)=-\frac{3\pi}{8}H(j(-3)(\frac{3\pi}{4}))e^{j(-3)(\frac{3\pi}{4})} - \frac{3\pi}{8}H(j(-1)(\frac{3\pi}{4}))e^{j(-1)(\frac{3\pi}{4})} - \frac{3\pi}{8}H(j(1)(\frac{3\pi}{4}))e^{j(1)(\frac{3\pi}{4})} - \frac{3\pi}{8}H(j(3)(\frac{3\pi}{4}))e^{j(3)(\frac{3\pi}{4})}\, $

$ \,y(t)=-\frac{3\pi}{8}H(-j\frac{9\pi}{4})e^{-j\frac{9\pi}{4}} - \frac{3\pi}{8}H(-j\frac{3\pi}{4})e^{-j\frac{3\pi}{4}} - \frac{3\pi}{8}H(j\frac{3\pi}{4})e^{j\frac{3\pi}{4}} - \frac{3\pi}{8}H(j\frac{9\pi}{4})e^{j\frac{9\pi}{4}}\, $

$ \,y(t)=-\frac{3\pi}{8}(6e^{j\frac{9\pi}{2}}-5)e^{-j\frac{9\pi}{4}} - \frac{3\pi}{8}(6e^{j\frac{3\pi}{2}}-5)e^{-j\frac{3\pi}{4}} - \frac{3\pi}{8}(6e^{-j\frac{3\pi}{2}}-5)e^{j\frac{3\pi}{4}} - \frac{3\pi}{8}(6e^{-j\frac{9\pi}{2}}-5)e^{j\frac{9\pi}{4}}\, $

$ \,y(t)=-\frac{3\pi}{8}(6j-5)e^{-j\frac{9\pi}{4}} - \frac{3\pi}{8}(-6j-5)e^{-j\frac{3\pi}{4}} - \frac{3\pi}{8}(6j-5)e^{j\frac{3\pi}{4}} - \frac{3\pi}{8}(-6j-5)e^{j\frac{9\pi}{4}}\, $

$ \,y(t)=-\frac{3\pi}{8}(6j-5)e^{-j\frac{9\pi}{4}} + \frac{3\pi}{8}(6j+5)e^{-j\frac{3\pi}{4}} - \frac{3\pi}{8}(6j-5)e^{j\frac{3\pi}{4}} + \frac{3\pi}{8}(6j+5)e^{j\frac{9\pi}{4}}\, $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood