(New page: Given the following system <math>\,s(t)=6x(t-2)-5x(t)\,</math> == Part A == Find the system's unit impulse response <math>\,h(t)\,</math> and system function <math>\,H(s)\,</math>. =...)
 
Line 7: Line 7:
  
 
Find the system's unit impulse response <math>\,h(t)\,</math> and system function <math>\,H(s)\,</math>.
 
Find the system's unit impulse response <math>\,h(t)\,</math> and system function <math>\,H(s)\,</math>.
 +
 +
 +
The unit impulse response is simply (plug a <math>\,\delta(t)\,</math> into the system)
 +
 +
<math>\,h(t)=6\delta(t-2)-5\delta(t)\,</math>
 +
 +
 +
The system function is found using the following formula (for LTI systems)
 +
 +
<math>\,H(s)=\int_{-\infty}^{\infty}h(t)e^{-st}dt\,</math>
 +
 +
<math>\,H(s)=\int_{-\infty}^{\infty}(6\delta(t-2)-5\delta(t))e^{-st}dt\,</math>
 +
 +
<math>\,H(s)=6\int_{-\infty}^{\infty}\delta(t-2)e^{-st}dt - 5\int_{-\infty}^{\infty}\delta(t)e^{-st}dt\,</math>
 +
 +
using the sifting property
 +
 +
<math>\,H(s)=6e^{-2s}-5e^{0}\,</math>
 +
 +
<math>\,H(s)=6e^{-2s}-5\,</math>
  
  

Revision as of 17:06, 25 September 2008

Given the following system

$ \,s(t)=6x(t-2)-5x(t)\, $


Part A

Find the system's unit impulse response $ \,h(t)\, $ and system function $ \,H(s)\, $.


The unit impulse response is simply (plug a $ \,\delta(t)\, $ into the system)

$ \,h(t)=6\delta(t-2)-5\delta(t)\, $


The system function is found using the following formula (for LTI systems)

$ \,H(s)=\int_{-\infty}^{\infty}h(t)e^{-st}dt\, $

$ \,H(s)=\int_{-\infty}^{\infty}(6\delta(t-2)-5\delta(t))e^{-st}dt\, $

$ \,H(s)=6\int_{-\infty}^{\infty}\delta(t-2)e^{-st}dt - 5\int_{-\infty}^{\infty}\delta(t)e^{-st}dt\, $

using the sifting property

$ \,H(s)=6e^{-2s}-5e^{0}\, $

$ \,H(s)=6e^{-2s}-5\, $


Part B

Compute the system's response to

$ \,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett