(New page: == Part A == Consider the system: <math>y(t)=\int_{-\infty}^{\infty}3x(t-1)dt</math> The unit impulse response is then <math>h(t) =3u(t-1)</math> Using <math>H(s) = \int_{-\infty}^{\...)
 
 
Line 21: Line 21:
 
== Part B ==
 
== Part B ==
  
Let <math>x(t)=cos(4 \pi t) + sin(6 \pi t)</math> with Fourier series coefficients are as follows:
+
The Fourier series coefficients in <math>x(t)=cos(3 \pi t) + sin(8 \pi t)</math> are:
  
<math>a_{4} = a_{-4} = \frac{1}{2}</math>
+
<math>a_{3} = \frac{1}{2}</math>
  
<math>a_{6} = -a_{-6} = \frac{1}{2j}</math>
+
<math>a_{-3} = \frac{1}{2}</math>
  
All other <math>a_{k}</math> values are 0
+
<math>a_{8} = \frac{1}{2j}</math>
  
Then the response of <math>x(t)</math> to the system <math>y(t)</math> based on <math>H(s)</math> and the Fouries series coefficients is:
+
<math>-a_{-8} = \frac{1}{2j}</math>
 +
 
 +
For <math> k \neq [3,-3,8,-8],  a_{k}</math> = 0
 +
 
 +
The response of the input <math>x(t)</math> to the system <math>y(t)</math> using <math>H(s)</math> and the above coefficients is:
  
 
<math>y(t)=\sum_{k=-\infty}^{\infty}a_{k}H(s)</math>
 
<math>y(t)=\sum_{k=-\infty}^{\infty}a_{k}H(s)</math>

Latest revision as of 16:31, 26 September 2008

Part A

Consider the system:

$ y(t)=\int_{-\infty}^{\infty}3x(t-1)dt $

The unit impulse response is then $ h(t) =3u(t-1) $

Using $ H(s) = \int_{-\infty}^{\infty}h(t)e^{-st}dt $

we find that

$ H(s) = \int_{-\infty}^{\infty}3u(t-1)e^{-st}dt $

$ =\int_{1}^{\infty}3e^{-st}dt $

$ =(\frac{-3}{s}e^{-st})|_{1}^{\infty} $

$ =\frac{3}{s} $

Part B

The Fourier series coefficients in $ x(t)=cos(3 \pi t) + sin(8 \pi t) $ are:

$ a_{3} = \frac{1}{2} $

$ a_{-3} = \frac{1}{2} $

$ a_{8} = \frac{1}{2j} $

$ -a_{-8} = \frac{1}{2j} $

For $ k \neq [3,-3,8,-8], a_{k} $ = 0

The response of the input $ x(t) $ to the system $ y(t) $ using $ H(s) $ and the above coefficients is:

$ y(t)=\sum_{k=-\infty}^{\infty}a_{k}H(s) $

$ =\frac{1}{s} + \frac{1}{s} + \frac{1}{sj} - \frac{1}{sj} $

$ =\frac{2}{s} $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics