Revision as of 18:44, 25 September 2008 by Drmorris (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Part A

Define $ y(t)=\int_{-\infty}^{\infty}\frac{1}{2}x(t)dt $.

h(t) is the system response of $ x(t)=\delta (t) $.

$ h(t)=\int_{-\infty}^{\infty}\frac{1}{2}\delta (t)dt=\frac{1}{2}u(t) $.

$ H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}=\int_{-\infty}^{\infty}\frac{1}{2}u(\tau)e^{-s\tau} $

$ H(s)=\int_{0}^{\infty}\frac{1}{2}e^{-s\tau}=\frac{-1}{2s}e^{-s\tau}|_0^\infty=\frac{-1}{2s}(e^{-\infty}-e^{0}) $

$ H(s)=\frac{1}{2s} $

Part B

When $ x(t) = \sum^{\infty}_{k = -\infty} a_ke^{jK{w_0}t}\!= $,

the response y(t) is equal to$ \sum^{\infty}_{k = -\infty} a_kH(jw)e^{jK{w_0}t}\! $

From Question 1:

$ x(t) = 4cos(4t)+(2+12j)sin(12t)=2e^{1(j4t)}+2e^{-1(j4t)}+(6-j)e^{3(j4t)}+(j-6)e^{-3(j4t)} $

$ y(t) = \sum^{\infty}_{k = -\infty} a_kH(jw)e^{jK{w_0}t}\!=2H(j4)e^{1(j4t)}+2H(j4)e^{-1(j4t)}+(6-j)H(j4)e^{3(j4t)}+(j-6)H(j4)e^{-3(j4t)} $

$ y(t)=\frac{-1}{4}je^{1(j4t)}+\frac{-1}{4}je^{-1(j4t)}+(\frac{-1}{8}-\frac{3}{4}j)e^{3(j4t)}+(\frac{1}{8}+\frac{3}{4}j)e^{-3(j4t)} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett