(Example Response)
m (System Function: I'm an idiot. math = fixed)
Line 22: Line 22:
  
 
H(s) = <math> \int_{-\infty}^{\infty}3\delta(\tau)e^{-s\tau}d\tau</math>
 
H(s) = <math> \int_{-\infty}^{\infty}3\delta(\tau)e^{-s\tau}d\tau</math>
 
 
H(s) = <math> 3e^{-s}\int_{-\infty}^{\infty}\delta(\tau)e^{\tau}d\tau</math>
 
  
  
 
By the Sifting property, this is:
 
By the Sifting property, this is:
  
H(s) = <math>3e^{-s}e^0</math>
+
H(s) = <math>3e^0</math>
  
 
thus,
 
thus,
  
H(s) = <math>3e^{-s}</math>
+
H(s) = <math>3</math>
 
+
 
+
  
 
==Example Response==
 
==Example Response==

Revision as of 15:33, 25 September 2008

<< Back to Homework 4

Homework 4 Ben Horst: 4.1 :: 4.3 :: 4.4


System

y(t) = 3x(t) which is proven as an LTI system ( shown here)

Impulse Response

y($ \delta(t) $) = 3($ \delta(t) $)

=>impulse response = $ 3\delta(t) $


System Function

Find H(s):

H($ j\omega $) = $ \int_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}d\tau $, where $ j\omega $ is s.


H(s) = $ \int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau $


H(s) = $ \int_{-\infty}^{\infty}3\delta(\tau)e^{-s\tau}d\tau $


By the Sifting property, this is:

H(s) = $ 3e^0 $

thus,

H(s) = $ 3 $

Example Response

Input

From previous part of homework:

$ x(t) = 2\sin(6t) + 4\cos(3t) $

Info

From the previously computed math, we can determine all the coefficients: $ \ \ a_{-2} = 1; \ \ a_{-1} = 2; \ \ a_{0} = 0; \ \ a_1 = 2;\ \ a_{2} = -1 $

The fundamental period of the function is found from: $ e^{j\omega_0} $ where he period T = $ {2\pi \over \omega_o} $

Thus, the fundamental period = $ {2\pi \over 3} $


Response

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin