(Input)
(Example Response)
Line 42: Line 42:
  
 
<math>x(t) = 2\sin(6t) + 4\cos(3t)</math>
 
<math>x(t) = 2\sin(6t) + 4\cos(3t)</math>
 +
 +
===Info===
 +
From the [[HW4.1 Ben Horst _ECE301Fall2008mboutin| previously computed]]  math, we can determine all the coefficients:
 +
<math> \ \ a_{-2} = 1; \ \ a_{-1} = 2; \ \ a_{0} = 0; \ \  a_1 = 2;\ \ a_{2} = -1 </math>
 +
 +
The fundamental period of the function is found from: <math>e^{j\omega_0}</math> where he period T = <math>{2\pi \over \omega_o}</math>
 +
 +
Thus, the fundamental period = <math> {2\pi \over 3} </math>
 +
  
 
===Response===
 
===Response===

Revision as of 15:26, 25 September 2008

<< Back to Homework 4

Homework 4 Ben Horst: 4.1 :: 4.3 :: 4.4


System

y(t) = 3x(t) which is proven as an LTI system ( shown here)

Impulse Response

y($ \delta(t) $) = 3($ \delta(t) $)

=>impulse response = $ 3\delta(t) $


System Function

Find H(s):

H($ j\omega $) = $ \int_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}d\tau $, where $ j\omega $ is s.


H(s) = $ \int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau $


H(s) = $ \int_{-\infty}^{\infty}3\delta(\tau)e^{-s\tau}d\tau $


H(s) = $ 3e^{-s}\int_{-\infty}^{\infty}\delta(\tau)e^{\tau}d\tau $


By the Sifting property, this is:

H(s) = $ 3e^{-s}e^0 $

thus,

H(s) = $ 3e^{-s} $


Example Response

Input

From previous part of homework:

$ x(t) = 2\sin(6t) + 4\cos(3t) $

Info

From the previously computed math, we can determine all the coefficients: $ \ \ a_{-2} = 1; \ \ a_{-1} = 2; \ \ a_{0} = 0; \ \ a_1 = 2;\ \ a_{2} = -1 $

The fundamental period of the function is found from: $ e^{j\omega_0} $ where he period T = $ {2\pi \over \omega_o} $

Thus, the fundamental period = $ {2\pi \over 3} $


Response

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett