(started h(s))
(finished h(s))
Line 9: Line 9:
 
y(<math>\delta(t)</math>) = 3(<math>\delta(t)</math>)
 
y(<math>\delta(t)</math>) = 3(<math>\delta(t)</math>)
  
=>impulse response = <math>2\delta(t)</math>
+
=>impulse response = <math>3\delta(t)</math>
  
  
Line 15: Line 15:
 
Find H(s):
 
Find H(s):
  
H(s) = <math> \int_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}d\tau</math>, where <math>j\omega</math> is <em>s</em>.
+
H(<math>j\omega</math>) = <math> \int_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}d\tau</math>, where <math>j\omega</math> is <em>s</em>.
 +
 
 +
 
 +
H(s) = <math> \int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau</math>
 +
 
 +
 
 +
H(s) = <math> \int_{-\infty}^{\infty}3\delta(\tau)e^{-s\tau}d\tau</math>
 +
 
 +
 
 +
H(s) = <math> 3e^{-s}\int_{-\infty}^{\infty}\delta(\tau)e^{\tau}d\tau</math>
 +
 
 +
 
 +
By the Sifting property, this is:
 +
 
 +
H(s) = <math>3e^{-s}e^0</math>
 +
 
 +
thus,
 +
 
 +
H(s) = <math>3e^{-s}</math>
  
  
  
 
==Example Response==
 
==Example Response==
=Input=
+
===Input===
  
  
=Response=
+
===Response===

Revision as of 15:10, 25 September 2008

<< Back to Homework 4

Homework 4 Ben Horst: 4.1 :: 4.3 :: 4.4


System

y(t) = 3x(t) which is proven as an LTI system ( shown here)

Impulse Response

y($ \delta(t) $) = 3($ \delta(t) $)

=>impulse response = $ 3\delta(t) $


System Function

Find H(s):

H($ j\omega $) = $ \int_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}d\tau $, where $ j\omega $ is s.


H(s) = $ \int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau $


H(s) = $ \int_{-\infty}^{\infty}3\delta(\tau)e^{-s\tau}d\tau $


H(s) = $ 3e^{-s}\int_{-\infty}^{\infty}\delta(\tau)e^{\tau}d\tau $


By the Sifting property, this is:

H(s) = $ 3e^{-s}e^0 $

thus,

H(s) = $ 3e^{-s} $


Example Response

Input

Response

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett