m
(started h(s))
Line 1: Line 1:
 
[[Homework 4_ECE301Fall2008mboutin|<< Back to Homework 4]]
 
[[Homework 4_ECE301Fall2008mboutin|<< Back to Homework 4]]
  
Homework 4 Ben Horst:  [[HW4.1 Ben Horst _ECE301Fall2008mboutin| 4.1]] :: [[HW4.2 Ben Horst _ECE301Fall2008mboutin| 4.2]]  ::  [[HW4.3 Ben Horst _ECE301Fall2008mboutin| 4.3]] ::  [[HW4.4 Ben Horst _ECE301Fall2008mboutin| 4.4]] :: [[HW4.5 Ben Horst _ECE301Fall2008mboutin| 4.5]]
+
Homework 4 Ben Horst:  [[HW4.1 Ben Horst _ECE301Fall2008mboutin| 4.1]] :: [[HW4.3 Ben Horst _ECE301Fall2008mboutin| 4.3]] ::  [[HW4.4 Ben Horst _ECE301Fall2008mboutin| 4.4]]
 +
----
 +
==System==
 +
y(t) = 3x(t) which is proven as an LTI system ([[HW2-C_Ben_Horst _ECE301Fall2008mboutin| shown here]])
 +
 
 +
==Impulse Response==
 +
y(<math>\delta(t)</math>) = 3(<math>\delta(t)</math>)
 +
 
 +
=>impulse response = <math>2\delta(t)</math>
 +
 
 +
 
 +
==System Function==
 +
Find H(s):
 +
 
 +
H(s) = <math> \int_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}d\tau</math>, where <math>j\omega</math> is <em>s</em>.
 +
 
 +
 
 +
 
 +
==Example Response==
 +
=Input=
 +
 
 +
 
 +
=Response=

Revision as of 15:01, 25 September 2008

<< Back to Homework 4

Homework 4 Ben Horst: 4.1 :: 4.3 :: 4.4


System

y(t) = 3x(t) which is proven as an LTI system ( shown here)

Impulse Response

y($ \delta(t) $) = 3($ \delta(t) $)

=>impulse response = $ 2\delta(t) $


System Function

Find H(s):

H(s) = $ \int_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}d\tau $, where $ j\omega $ is s.


Example Response

Input

Response

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin