(26 intermediate revisions by the same user not shown)
Line 1: Line 1:
  A Signal for which the output signal  is constant times the input is referred as an '''eigenfunction''' of the system,andthe amplitude is called the system's '''eigenvalue'''
+
  A Signal for which the output signal  is constant times the input is referred as
 +
 
 +
an '''eigenfunction''' of the system,andthe amplitude is called the  
 +
 
 +
system's ''eigenvalue'''
 +
 
 +
 
 +
'''PART A:'''
 +
----
 +
 
 +
 
  
 
let the input be
 
let the input be
  
<math>x(t)={e^st}</math>
+
<math>x(t)= e^{st}</math>
 +
 
 +
we can determine  the output using convolution integral
 +
 
 +
<math>y(t)= \int_{-\infty}^{\infty}h(T)x(t-T)\, dt </math>
 +
 
 +
= <math> \int_{-\infty}^{\infty}h(T){e^{s(t-T)}}\, dt </math>
 +
 
 +
= <math>e^{st} \int_{-\infty}^{\infty}h(T){e^{-sT}}\, dt </math>
 +
 
 +
= <math>H(s) e^{st}</math>
 +
 
 +
h(t) is the impulse response of the LTI SYSTEM
 +
H(s) is the system fuction
 +
 
 +
<math>H(s)= \int_{-\infty}^{\infty}h(T){e^{-sT}}\, dT</math>
 +
lets assume that:
 +
 
 +
<math>y(t)= 3x(t)</math>
 +
 
 +
let  <math>x(t)= \delta\,\!(t)</math>
 +
 
 +
<math>h(t)= 3\delta\,\!(t)</math>
 +
 
 +
'''system function:'''
 +
 
 +
<math>H(s)=\int_{-\infty}^{\infty}3\delta\,\!(T)){e^{-j\omega\,\!T}}\, dT</math>
 +
 
 +
<math>H(s)=3{e^{-j\omega\,\!0}}</math>
 +
 
 +
<math>H(s)=3</math>
 +
 
 +
'''PART B:
 +
----
 +
'''
 +
 
 +
 
 +
 
 +
 
 +
The coefficients are as follows:
 +
 
 +
<math>a_1 = \frac{-j}{2}</math>
 +
 
 +
<math>a_-1 = \frac{j}{2}</math>
 +
 
 +
<math>a_2  = 1 </math>
 +
 
 +
<math>a_-2  = 1 </math>
 +
 
 +
<math>a_k = 0</math>
 +
 
 +
<math>=\frac{-s}{2}+\frac{s}{2}+s+s</math>
 +
 
 +
<math>=2s</math>

Latest revision as of 14:56, 26 September 2008

A Signal for which the output signal  is constant times the input is referred as
an eigenfunction of the system,andthe amplitude is called the 
system's eigenvalue'


PART A:


let the input be

$ x(t)= e^{st} $

we can determine the output using convolution integral

$ y(t)= \int_{-\infty}^{\infty}h(T)x(t-T)\, dt $

= $ \int_{-\infty}^{\infty}h(T){e^{s(t-T)}}\, dt $

= $ e^{st} \int_{-\infty}^{\infty}h(T){e^{-sT}}\, dt $

= $ H(s) e^{st} $

h(t) is the impulse response of the LTI SYSTEM H(s) is the system fuction

$ H(s)= \int_{-\infty}^{\infty}h(T){e^{-sT}}\, dT $ lets assume that:

$ y(t)= 3x(t) $

let $ x(t)= \delta\,\!(t) $

$ h(t)= 3\delta\,\!(t) $

system function:

$ H(s)=\int_{-\infty}^{\infty}3\delta\,\!(T)){e^{-j\omega\,\!T}}\, dT $

$ H(s)=3{e^{-j\omega\,\!0}} $

$ H(s)=3 $

PART B:




The coefficients are as follows:

$ a_1 = \frac{-j}{2} $

$ a_-1 = \frac{j}{2} $

$ a_2 = 1 $

$ a_-2 = 1 $

$ a_k = 0 $

$ =\frac{-s}{2}+\frac{s}{2}+s+s $

$ =2s $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood