(New page: A Signal for which the output signal is constant times the input is referred to an '''eigenfunction''' of the system,andthe amplitude is called the system's '''eigenvalue''' let the inp...)
 
 
(27 intermediate revisions by the same user not shown)
Line 1: Line 1:
  A Signal for which the output signal  is constant times the input is referred to an '''eigenfunction''' of the system,andthe amplitude is called the system's '''eigenvalue'''
+
  A Signal for which the output signal  is constant times the input is referred as
 +
 
 +
an '''eigenfunction''' of the system,andthe amplitude is called the  
 +
 
 +
system's ''eigenvalue'''
 +
 
 +
 
 +
'''PART A:'''
 +
----
 +
 
 +
 
  
 
let the input be
 
let the input be
  
<math>x(t)={e^st}</math>
+
<math>x(t)= e^{st}</math>
 +
 
 +
we can determine  the output using convolution integral
 +
 
 +
<math>y(t)= \int_{-\infty}^{\infty}h(T)x(t-T)\, dt </math>
 +
 
 +
= <math> \int_{-\infty}^{\infty}h(T){e^{s(t-T)}}\, dt </math>
 +
 
 +
= <math>e^{st} \int_{-\infty}^{\infty}h(T){e^{-sT}}\, dt </math>
 +
 
 +
= <math>H(s) e^{st}</math>
 +
 
 +
h(t) is the impulse response of the LTI SYSTEM
 +
H(s) is the system fuction
 +
 
 +
<math>H(s)= \int_{-\infty}^{\infty}h(T){e^{-sT}}\, dT</math>
 +
lets assume that:
 +
 
 +
<math>y(t)= 3x(t)</math>
 +
 
 +
let  <math>x(t)= \delta\,\!(t)</math>
 +
 
 +
<math>h(t)= 3\delta\,\!(t)</math>
 +
 
 +
'''system function:'''
 +
 
 +
<math>H(s)=\int_{-\infty}^{\infty}3\delta\,\!(T)){e^{-j\omega\,\!T}}\, dT</math>
 +
 
 +
<math>H(s)=3{e^{-j\omega\,\!0}}</math>
 +
 
 +
<math>H(s)=3</math>
 +
 
 +
'''PART B:
 +
----
 +
'''
 +
 
 +
 
 +
 
 +
 
 +
The coefficients are as follows:
 +
 
 +
<math>a_1 = \frac{-j}{2}</math>
 +
 
 +
<math>a_-1 = \frac{j}{2}</math>
 +
 
 +
<math>a_2  = 1 </math>
 +
 
 +
<math>a_-2  = 1 </math>
 +
 
 +
<math>a_k = 0</math>
 +
 
 +
<math>=\frac{-s}{2}+\frac{s}{2}+s+s</math>
 +
 
 +
<math>=2s</math>

Latest revision as of 14:56, 26 September 2008

A Signal for which the output signal  is constant times the input is referred as
an eigenfunction of the system,andthe amplitude is called the 
system's eigenvalue'


PART A:


let the input be

$ x(t)= e^{st} $

we can determine the output using convolution integral

$ y(t)= \int_{-\infty}^{\infty}h(T)x(t-T)\, dt $

= $ \int_{-\infty}^{\infty}h(T){e^{s(t-T)}}\, dt $

= $ e^{st} \int_{-\infty}^{\infty}h(T){e^{-sT}}\, dt $

= $ H(s) e^{st} $

h(t) is the impulse response of the LTI SYSTEM H(s) is the system fuction

$ H(s)= \int_{-\infty}^{\infty}h(T){e^{-sT}}\, dT $ lets assume that:

$ y(t)= 3x(t) $

let $ x(t)= \delta\,\!(t) $

$ h(t)= 3\delta\,\!(t) $

system function:

$ H(s)=\int_{-\infty}^{\infty}3\delta\,\!(T)){e^{-j\omega\,\!T}}\, dT $

$ H(s)=3{e^{-j\omega\,\!0}} $

$ H(s)=3 $

PART B:




The coefficients are as follows:

$ a_1 = \frac{-j}{2} $

$ a_-1 = \frac{j}{2} $

$ a_2 = 1 $

$ a_-2 = 1 $

$ a_k = 0 $

$ =\frac{-s}{2}+\frac{s}{2}+s+s $

$ =2s $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett