Line 35: Line 35:
  
 
<math>H(s)=\int_{-\infty}^{\infty}3\delta\,\!(T)){e^{-j\omega\,\!T}}\, dT</math>
 
<math>H(s)=\int_{-\infty}^{\infty}3\delta\,\!(T)){e^{-j\omega\,\!T}}\, dT</math>
 +
 +
<math>H(s)=3{e^{-j\omega\,\!0}}</math>
 +
 +
<math>H(s)=3</math>

Revision as of 14:33, 26 September 2008

A Signal for which the output signal  is constant times the input is referred as
an eigenfunction of the system,andthe amplitude is called the 
system's eigenvalue'

let the input be

$ x(t)= e^{st} $

we can determine the output using convolution integral

$ y(t)= \int_{-\infty}^{\infty}h(T)x(t-T)\, dt $

= $ \int_{-\infty}^{\infty}h(T){e^{s(t-T)}}\, dt $

= $ e^{st} \int_{-\infty}^{\infty}h(T){e^{-sT}}\, dt $

= $ H(s) e^{st} $

h(t) is the impulse response of the LTI SYSTEM H(s) is the system fuction

$ H(s)= \int_{-\infty}^{\infty}h(T){e^{-sT}}\, dT $

lets assume that:

$ y(t)= 3x(t) $

let $ x(t)= \delta\,\!(t) $

$ h(t)= 3\delta\,\!(t) $

system function:

$ H(s)=\int_{-\infty}^{\infty}3\delta\,\!(T)){e^{-j\omega\,\!T}}\, dT $

$ H(s)=3{e^{-j\omega\,\!0}} $

$ H(s)=3 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood