(New page: Let the DT siganl be 8 + sin<math>( \frac{2*pi*n}{N} )</math> + 8cos<math>( \frac{4*pi*n}{N} )</math>)
 
Line 2: Line 2:
  
  
8 + sin<math>( \frac{2*pi*n}{N} )</math> + 8cos<math>( \frac{4*pi*n}{N} )</math>
+
8 + sin<math>( \frac{2 pi n}{N} )</math> + 8cos<math>( \frac{4 pi n}{N} )</math>
 +
 
 +
= 8 + <math>( \frac{1}{2j})</math> { e^(<math>( \frac{j2 pi n}{N} )</math>) - e^(<math>( \frac{-j2 pi n}{N} )</math> } + 8 { e^(<math>( \frac{j4 pi n}{N} )</math>) - e^(<math>( \frac{-j4 pi n}{N} )</math> }
 +
 
 +
= 8 + <math>( \frac{-1j}{2})</math> { e^(<math>( \frac{j2 pi n}{N} )</math>)} + <math>( \frac{1j}{2})</math> { e^(<math>( \frac{-j2 pi n}{N} )</math>)} +4 { e^(<math>( \frac{j4 pi n}{N} )</math>)} +4 { e^(<math>( \frac{-j4 pi n}{N} )</math>)}
 +
 
 +
Therfore, we have te coeffients as
 +
 
 +
<math>a_0</math> = 8

Revision as of 17:49, 26 September 2008

Let the DT siganl be


8 + sin$ ( \frac{2 pi n}{N} ) $ + 8cos$ ( \frac{4 pi n}{N} ) $

= 8 + $ ( \frac{1}{2j}) $ { e^($ ( \frac{j2 pi n}{N} ) $) - e^($ ( \frac{-j2 pi n}{N} ) $ } + 8 { e^($ ( \frac{j4 pi n}{N} ) $) - e^($ ( \frac{-j4 pi n}{N} ) $ }

= 8 + $ ( \frac{-1j}{2}) $ { e^($ ( \frac{j2 pi n}{N} ) $)} + $ ( \frac{1j}{2}) $ { e^($ ( \frac{-j2 pi n}{N} ) $)} +4 { e^($ ( \frac{j4 pi n}{N} ) $)} +4 { e^($ ( \frac{-j4 pi n}{N} ) $)}

Therfore, we have te coeffients as

$ a_0 $ = 8

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett