(New page: == Fourier Series for DT signals == Let <math>x[n]\,</math> be a periodic DT signal with fundamental period N. Then <math>x[n]=\sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N} n}</math> where ...)
 
(Fourier Series for DT signals)
Line 6: Line 6:
  
  
where  <math>a_k=\frac{1}{n}\sum_{n=0}^{N-1} x_n e^{-jk\frac{2\pi}{N} n} </math>
+
where  <math>a_k=\frac{1}{N}\sum_{n=0}^{N-1} x_n e^{-jk\frac{2\pi}{N} n} </math>
  
  
 
note that <math>\frac{2\pi}{N} =\omega_0</math>
 
note that <math>\frac{2\pi}{N} =\omega_0</math>
 +
 +
 +
 +
 +
Now consider the signal <math>x[n]=sin(3 \pi)\,</math>
 +
 +
It's periodic because <math>\frac{\omega_0}{2\pi} = \frac{\3\pi}{2\pi} =1.5</math>is a rational number.

Revision as of 05:15, 25 September 2008

Fourier Series for DT signals

Let $ x[n]\, $ be a periodic DT signal with fundamental period N.

Then $ x[n]=\sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N} n} $


where $ a_k=\frac{1}{N}\sum_{n=0}^{N-1} x_n e^{-jk\frac{2\pi}{N} n} $


note that $ \frac{2\pi}{N} =\omega_0 $



Now consider the signal $ x[n]=sin(3 \pi)\, $

It's periodic because $ \frac{\omega_0}{2\pi} = \frac{\3\pi}{2\pi} =1.5 $is a rational number.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett