(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Define a periodic DT signal and compute its Fourier series coefficients. ==
 
==Define a periodic DT signal and compute its Fourier series coefficients. ==
For CT,  
+
For DT,  
  
<math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math>
+
<math>x[n]=\sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N} n}</math>
  
 
where
 
where
  
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>.
+
<math>a_k=\frac{1}{N}\sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N} n} </math>.
  
 
Let the signal be
 
Let the signal be
 +
  x[n] = 2cos(5πn)
 +
 +
N = 2
 +
 +
<math>a_k = \frac{1}{2} \sum_{n=0}^{N-1}x[n] e^{-jk\frac{2\pi}{2} n}</math>
 +
 +
<math>a0 = \frac{1}{2} \sum_{n=0}^{1}x[n] e^{0}</math>
 +
 +
<math>a_0 = \frac{1}{2} *-2</math>
 +
 +
a0 = −1  similarly a1 = -2

Latest revision as of 18:22, 26 September 2008

Define a periodic DT signal and compute its Fourier series coefficients.

For DT,

$ x[n]=\sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N} n} $

where

$ a_k=\frac{1}{N}\sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N} n} $.

Let the signal be

  x[n] = 2cos(5πn)

N = 2

$ a_k = \frac{1}{2} \sum_{n=0}^{N-1}x[n] e^{-jk\frac{2\pi}{2} n} $

$ a0 = \frac{1}{2} \sum_{n=0}^{1}x[n] e^{0} $

$ a_0 = \frac{1}{2} *-2 $

a0 = −1 similarly a1 = -2

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010