(DT signal & its Fourier Coefficients)
(DT signal & its Fourier Coefficients)
 
(23 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
<math>\ x[n] = 5sin(3 \pi n + \frac{\pi}{4})</math>
 
<math>\ x[n] = 5sin(3 \pi n + \frac{\pi}{4})</math>
  
Knowing its Fourier series is
+
Knowing its Fourier series is:
  
 
<math>\ x[n] = \frac{5}{2j} (e^{j (3\pi n + \frac{\pi}{4})}-e^{-j (3\pi n + \frac{\pi}{4})}) </math>
 
<math>\ x[n] = \frac{5}{2j} (e^{j (3\pi n + \frac{\pi}{4})}-e^{-j (3\pi n + \frac{\pi}{4})}) </math>
  
<math>\ x[n] = \frac{5}{2j} (e^{j (3\pi n)} e^{j\frac{\pi}{4}}-e^{-j (3\pi n)}e^{j\frac{\pi}{4}}) </math>
+
We then proceed to compute:
  
:<math>e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} </math><br>
+
<math>\ x[n] = \frac{5}{2j} (e^{j (3\pi n)} e^{j\frac{\pi}{4}}-e^{-j (3\pi n)}e^{-j\frac{\pi}{4}}) </math>
  
:<math>e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} </math>
+
Knowing the following,
 +
 
 +
<math>\ e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} </math><br>
 +
 
 +
<math>\ e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} </math>
 +
 
 +
We substitute:
 +
 
 +
<math>\ x[n] = \frac{5}{2j} (e^{j (3\pi n)} ({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) -e^{-j (3\pi n)} ({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) ) </math>
 +
 
 +
And simplify:
 +
 
 +
<math>\ x[n] = \frac{5}{j2\sqrt{2}} e^{j (3\pi n)} + \frac{5}{2\sqrt{2}}e^{j (3\pi n)}  -    \frac{5}{j2\sqrt{2}}e^{-j (3\pi n)}  +  \frac{5}{2\sqrt{2}}e^{-j (3\pi n)} </math>
 +
 
 +
<math>\ x[n] = (\frac{5}{j2\sqrt{2}}+ \frac{5}{2\sqrt{2}}) e^{j (3\pi n)} + (\frac{5}{2\sqrt{2}} - \frac{5}{j2\sqrt{2}})e^{-j (3\pi n)} </math>
 +
 
 +
So, we get the coefficients:
 +
 
 +
<math>\ a_{0} = 0 </math>
 +
 
 +
<math>\ a_{1} = \frac{5}{j2\sqrt{2}}+ \frac{5}{2\sqrt{2}} </math>
 +
 
 +
<math>\ a_{-1} = \frac{5}{2\sqrt{2}} - \frac{5}{j2\sqrt{2}} </math>

Latest revision as of 17:10, 26 September 2008

DT signal & its Fourier Coefficients

$ \ x[n] = 5sin(3 \pi n + \frac{\pi}{4}) $

Knowing its Fourier series is:

$ \ x[n] = \frac{5}{2j} (e^{j (3\pi n + \frac{\pi}{4})}-e^{-j (3\pi n + \frac{\pi}{4})}) $

We then proceed to compute:

$ \ x[n] = \frac{5}{2j} (e^{j (3\pi n)} e^{j\frac{\pi}{4}}-e^{-j (3\pi n)}e^{-j\frac{\pi}{4}}) $

Knowing the following,

$ \ e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} $

$ \ e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} $

We substitute:

$ \ x[n] = \frac{5}{2j} (e^{j (3\pi n)} ({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) -e^{-j (3\pi n)} ({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) ) $

And simplify:

$ \ x[n] = \frac{5}{j2\sqrt{2}} e^{j (3\pi n)} + \frac{5}{2\sqrt{2}}e^{j (3\pi n)} - \frac{5}{j2\sqrt{2}}e^{-j (3\pi n)} + \frac{5}{2\sqrt{2}}e^{-j (3\pi n)} $

$ \ x[n] = (\frac{5}{j2\sqrt{2}}+ \frac{5}{2\sqrt{2}}) e^{j (3\pi n)} + (\frac{5}{2\sqrt{2}} - \frac{5}{j2\sqrt{2}})e^{-j (3\pi n)} $

So, we get the coefficients:

$ \ a_{0} = 0 $

$ \ a_{1} = \frac{5}{j2\sqrt{2}}+ \frac{5}{2\sqrt{2}} $

$ \ a_{-1} = \frac{5}{2\sqrt{2}} - \frac{5}{j2\sqrt{2}} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood