(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 +
 
CT Periodic Signal : <math>x(t) = 1+\sin \omega_0 t + \cos(2\omega_0 t+ \frac{\pi}{4})</math>
 
CT Periodic Signal : <math>x(t) = 1+\sin \omega_0 t + \cos(2\omega_0 t+ \frac{\pi}{4})</math>
  
Line 5: Line 15:
 
<math>x(t) = 1+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j(2\omega_0 t+\frac {\pi}{4})}+\frac {1}{2j}e^{-j(2\omega_0 t+\frac {\pi}{4})}</math>
 
<math>x(t) = 1+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j(2\omega_0 t+\frac {\pi}{4})}+\frac {1}{2j}e^{-j(2\omega_0 t+\frac {\pi}{4})}</math>
  
<math>x(t) = 1+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+(\frac{1}{2}e^{j\frac {\pi}{4}}e^{2\omega_0 t}+(\frac{1}{2}e^{-j\frac {\pi}{4}}e^{2\omega_0 t}</math>
+
<math>x(t) = 1e^{0j\omega_0 t}+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j\frac {\pi}{4}}e^{2\omega_0 t}+\frac{1}{2}e^{-j\frac {\pi}{4}}e^{2\omega_0 t}</math>
  
 +
Hence we get,
  
I take <math>\omega_o \,</math> as <math>\pi \,</math> since both functions have a period based on it.
+
<math>a_0 = 1</math>
  
The following is the coefficient of the signal:
+
<math>a_1 = \frac{1}{2j},</math>
  
<math>a_3 = \frac{1}{2}\,</math>
+
<math>a_{-1} = -\frac{1}{2j},</math>
  
<math>a_{-3} = \frac{1}{2}\,</math>
+
<math>a_2 = \frac{1}{2}e^{j\frac{\pi}{4}}=\frac{\sqrt2}{4}(1+j),</math>
  
<math>a_{4} = \frac{1}{2j}\,</math>
+
<math>a_{-2} = \frac{1}{2}e^{-j\frac{\pi}{4}}=\frac{\sqrt2}{4}(1-j),</math>
 
+
<math>a_{-4} = -\frac{1}{2j}\,</math>
+
  
 
We can write the function in the following illiterations:
 
We can write the function in the following illiterations:
  
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math> where
+
<math>a_0 = 1</math>
 +
 
 +
<math>a_1 = \frac{1}{2j},</math>
 +
 
 +
<math>a_{-1} = -\frac{1}{2j},</math>
  
<math>a_3 = a_{-3} = \frac{1}{2}\,</math>
+
<math>a_2 = \frac{\sqrt2}{4}(1+j),</math>
  
<math>a_{4} = \frac{1}{2j} = -a_{-4}\,</math>
+
<math>a_{-2} = \frac{\sqrt2}{4}(1-j),</math>
  
<math>a_k = 0 , k \neq 3,-3,4,-4\,</math>
+
<math>a_k = 0 , k \neq 0,1,-1,2,-2\,</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:54, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"



CT Periodic Signal : $ x(t) = 1+\sin \omega_0 t + \cos(2\omega_0 t+ \frac{\pi}{4}) $

$ x(t) = 1+\frac {1}{2j} (e^{j\omega_0 t}-e^{-j\omega_0 t})+\frac{1}{2}(e^{j(2\omega_0 t+\frac {\pi}{4})}+e^{-j(2\omega_0 t+\frac {\pi}{4})}) $

$ x(t) = 1+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j(2\omega_0 t+\frac {\pi}{4})}+\frac {1}{2j}e^{-j(2\omega_0 t+\frac {\pi}{4})} $

$ x(t) = 1e^{0j\omega_0 t}+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j\frac {\pi}{4}}e^{2\omega_0 t}+\frac{1}{2}e^{-j\frac {\pi}{4}}e^{2\omega_0 t} $

Hence we get,

$ a_0 = 1 $

$ a_1 = \frac{1}{2j}, $

$ a_{-1} = -\frac{1}{2j}, $

$ a_2 = \frac{1}{2}e^{j\frac{\pi}{4}}=\frac{\sqrt2}{4}(1+j), $

$ a_{-2} = \frac{1}{2}e^{-j\frac{\pi}{4}}=\frac{\sqrt2}{4}(1-j), $

We can write the function in the following illiterations:

$ a_0 = 1 $

$ a_1 = \frac{1}{2j}, $

$ a_{-1} = -\frac{1}{2j}, $

$ a_2 = \frac{\sqrt2}{4}(1+j), $

$ a_{-2} = \frac{\sqrt2}{4}(1-j), $

$ a_k = 0 , k \neq 0,1,-1,2,-2\, $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang