(New page: CT Periodic Signal : <math>x(t) = 1+\sin \omega_0 t) + \cos(2\omega_0 t+ \frac{\pi}{4})</math> <math>x(t) = 1+\frac {1}{2j} [e^(j\omega_0 t)-e^(-j\omega_0 t)]+\frac{1}{2}{e^[j(2\omega_0 t...)
 
Line 1: Line 1:
CT Periodic Signal : <math>x(t) = 1+\sin \omega_0 t) + \cos(2\omega_0 t+ \frac{\pi}{4})</math>
+
CT Periodic Signal : <math>x(t) = 1+\sin \omega_0 t + \cos(2\omega_0 t+ \frac{\pi}{4})</math>
  
<math>x(t) = 1+\frac {1}{2j} [e^(j\omega_0 t)-e^(-j\omega_0 t)]+\frac{1}{2}{e^[j(2\omega_0 t)+/frac {\pi}{4})]+e^[-j(2\omega_0 t)+/frac {\pi}{4})]}</math>
+
<math>x(t) = 1+\frac {1}{2j} [e^j\omega_0 t-e^-j\omega_0 t]+\frac{1}{2}{e^j(2\omega_0 t+/frac {\pi}{4})+e^-j(2\omega_0 t+/frac {\pi}{4})}</math>
  
 
<math>= \frac{e^{3j\pi t}}{2} + \frac{e^{-3j\pi t}}{2} + \frac{e^{4j\pi t}}{2j} - \frac{e^{-4j\pi t}}{2j} \,</math>
 
<math>= \frac{e^{3j\pi t}}{2} + \frac{e^{-3j\pi t}}{2} + \frac{e^{4j\pi t}}{2j} - \frac{e^{-4j\pi t}}{2j} \,</math>

Revision as of 04:53, 25 September 2008

CT Periodic Signal : $ x(t) = 1+\sin \omega_0 t + \cos(2\omega_0 t+ \frac{\pi}{4}) $

$ x(t) = 1+\frac {1}{2j} [e^j\omega_0 t-e^-j\omega_0 t]+\frac{1}{2}{e^j(2\omega_0 t+/frac {\pi}{4})+e^-j(2\omega_0 t+/frac {\pi}{4})} $

$ = \frac{e^{3j\pi t}}{2} + \frac{e^{-3j\pi t}}{2} + \frac{e^{4j\pi t}}{2j} - \frac{e^{-4j\pi t}}{2j} \, $

I take $ \omega_o \, $ as $ \pi \, $ since both functions have a period based on it.

The following is the coefficient of the signal:

$ a_3 = \frac{1}{2}\, $

$ a_{-3} = \frac{1}{2}\, $

$ a_{4} = \frac{1}{2j}\, $

$ a_{-4} = -\frac{1}{2j}\, $

We can write the function in the following illiterations:

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $ where

$ a_3 = a_{-3} = \frac{1}{2}\, $

$ a_{4} = \frac{1}{2j} = -a_{-4}\, $

$ a_k = 0 , k \neq 3,-3,4,-4\, $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman