(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
== Fourier sum definition ==
 
== Fourier sum definition ==
 
The function as defined by summing fourier coefficients <math>\,a_k</math> is defined as:
 
The function as defined by summing fourier coefficients <math>\,a_k</math> is defined as:
Line 16: Line 25:
 
Now splitting up:
 
Now splitting up:
  
<math>x(t)=\frac{1+j}{2}e^{j\pi t}+\frac{1+j}{2}e^{-j\pi t}+\frac{1+j}{2j}e^{j\pi t}+\frac{-1-j}{2j}e^{-j\pi t}</math>
+
<math>x(t)=\frac{1+j}{2}e^{j\pi t}+\frac{1+j}{2}e^{-j\pi t}+\frac{1+j}{2j}e^{j2\pi t}+\frac{-1-j}{2j}e^{-j2\pi t}</math>
  
 
choose <math>\,\omega_0</math> as <math>\,\pi</math>, the smallest period between the two parts.
 
choose <math>\,\omega_0</math> as <math>\,\pi</math>, the smallest period between the two parts.
Line 28: Line 37:
 
<math>a_1=\frac{1+j}{2}</math>
 
<math>a_1=\frac{1+j}{2}</math>
  
<math>a_-1=\frac{1+j}{2}</math>
+
<math>a_{-1}=\frac{1+j}{2}</math>
  
 
<math>a_2=\frac{1+j}{2j}</math>
 
<math>a_2=\frac{1+j}{2j}</math>
  
<math>a_-2=\frac{-1-j}{2j}</math>
+
<math>a_{-2}=\frac{-1-j}{2j}</math>
  
 
All other <math>\,a_k</math> values are zero.
 
All other <math>\,a_k</math> values are zero.
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:55, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Fourier sum definition

The function as defined by summing fourier coefficients $ \,a_k $ is defined as:

$ x(t)=\sum^{\infty}_{k=-\infty} a_k e^{jk\omega_0 t}\, $

Example of a periodic CT signal

The following is a periodic signal:

$ \,x(t)=(1+j)cos(\pi t)+sin(2\pi t) $

Using Eulers formula, we can interpret this function in terms of exponentials which can then be used to compute the $ \,a_k $ values for a Fourier series:

$ \,x(t)=(1+j)\frac {e^{j\pi t}+e^{-j \pi t}}{2} + \frac {e^{j2 \pi t}-e^{-j2 \pi t}}{2j} $

Now splitting up:

$ x(t)=\frac{1+j}{2}e^{j\pi t}+\frac{1+j}{2}e^{-j\pi t}+\frac{1+j}{2j}e^{j2\pi t}+\frac{-1-j}{2j}e^{-j2\pi t} $

choose $ \,\omega_0 $ as $ \,\pi $, the smallest period between the two parts.

so this function becomes:

$ x(t)=\sum^{\infty}_{k=-\infty} a_k e^{jk\pi t}\, $

Which very nearly matches our function, we only need solve or point out our $ \,a_k $ values.

$ a_1=\frac{1+j}{2} $

$ a_{-1}=\frac{1+j}{2} $

$ a_2=\frac{1+j}{2j} $

$ a_{-2}=\frac{-1-j}{2j} $

All other $ \,a_k $ values are zero.


Back to Practice Problems on Signals and Systems

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang