(Periodic CT Signal)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
==Periodic CT Signal==
 
==Periodic CT Signal==
  
Line 21: Line 30:
 
We can write this as a sum:
 
We can write this as a sum:
  
<math> x(t)\neqsum^{\infty}_{k = -\infty} a_k  e^{j2k}\,</math>
+
<math> x(t)=\sum^{\infty}_{k = -\infty} a_k  e^{j2k}\,</math>
  
 
Where
 
Where
Line 29: Line 38:
 
<math> a_7 = -a_{-7} = \frac{1}{2j} </math>
 
<math> a_7 = -a_{-7} = \frac{1}{2j} </math>
  
<math> a_k = 0, k \= 1, -1, 7, -7 </math>
+
<math> a_k = 0, k \neq 1, -1, 7, -7 </math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:56, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Periodic CT Signal

The first signal that comes to mind when i think of a periodic CT signal is one involving sines and cosines, so let's work with one of those.

Let $ x(t) = sin(14t)+(1+3j)cos(2t) $

This can also be expressed as

$ x(t) = \frac{e^{14jt}}{2j}-\frac{e^{-14jt}}{2j} + \frac{(1+3j)*e^{2jt}}{2} + \frac{(1+3j)e^{-2jt}}{2} $

I contend that the $ \omega_0=2 $ since both functions are periodic based on it.

$ a_7=\frac{1}{2j} $

$ a_{-7} = \frac{-1}{2j} $

$ a_1 = \frac{1+3j}{2} $

$ a_{-1} = \frac{1+3j}{2} $

We can write this as a sum:

$ x(t)=\sum^{\infty}_{k = -\infty} a_k e^{j2k}\, $

Where

$ a_1=a_{-1}=\frac{1+3j}{2} $

$ a_7 = -a_{-7} = \frac{1}{2j} $

$ a_k = 0, k \neq 1, -1, 7, -7 $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin