(New page: ==Problem== Find the Fourier series coefficients of a CT signal. I chose the signal <math>x(t) = 3cos(2t)</math>. ==Fourier Series Coefficients== The Fourier series of an equation can be...)
 
(Fourier Series Coefficients)
Line 5: Line 5:
  
 
==Fourier Series Coefficients==
 
==Fourier Series Coefficients==
The Fourier series of an equation can be found by:
+
The Fourier series of a CT signal can be found by:
  
 
<math> x(t) = \sum_{n=-\infty}^\infty a_k e^{jkw_0t}</math>
 
<math> x(t) = \sum_{n=-\infty}^\infty a_k e^{jkw_0t}</math>

Revision as of 16:33, 26 September 2008

Problem

Find the Fourier series coefficients of a CT signal.

I chose the signal $ x(t) = 3cos(2t) $.

Fourier Series Coefficients

The Fourier series of a CT signal can be found by:

$ x(t) = \sum_{n=-\infty}^\infty a_k e^{jkw_0t} $

Fourier series coefficients can be found with the equation:

$ a_k = \frac{1}{T} \int_{0}^{T} x(t)e^{-jkw_0t} \,\ dt $

However, in the case of sinusoidal waves, the coefficients can be found more simply by applying Euler's formula to solve for the Fourier series and take the coefficients from that.

$ x(t) = 3cos(2t) = 3(\frac{e^{j2t}}{2}+\frac{e^{-j2t}}{2}) $

$ = \frac{3}{2}e^{j2t}+\frac{3}{2}e^{-j2t} $

And so, we know that our coefficients are both $ \frac{3}{2} $. Now, we need to find which $ a_k $s these belong to.

Knowing $ T $ is $ 2\pi $, we can find $ w_0 $.

$ w_0 = \frac{2\pi}{T} = \frac{2\pi}{2\pi} = 1 $

Finding the corresponding $ k $s should be easy.

We know

$ a_k e^{jkw_0t} $

corresponds to

$ \frac{3}{2}e^{j2t} $ and $ \frac{3}{2}e^{-j2t} $

and since $ w_0 = 1 $, then we can conclude

$ a_2 = \frac{3}{2} $

and

$ a_{-2} = \frac{3}{2} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood