(Solution)
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
== Equations ==
 
== Equations ==
  
Line 36: Line 46:
 
<br>
 
<br>
 
<br>
 
<br>
The same method can be used to find each value of <math>a_k\!</math>.  To compute the rest of the values I'll use complex exponential identities, as that is much less tedious:
+
The same method can be used to find each value of <math>a_k\!</math>.  To compute the rest of the values I'll use complex exponential identities:
 
<br>
 
<br>
 
<br>
 
<br>
Line 42: Line 52:
 
<math>x(t)=4sin(3t)+(1+2j)cos(2t)\!</math>
 
<math>x(t)=4sin(3t)+(1+2j)cos(2t)\!</math>
 
<br>
 
<br>
<math>=\frac{4}{2j}(e^{j3t}-e^{-j6t}+\frac{1+2j}{2}(e^{j2t}+e^{-j2t})</math>
+
<br>
 +
<math>=\frac{2}{j}(e^{j3t}-e^{-j3t})+\frac{1+2j}{2}(e^{j2t}+e^{-j2t})</math>
 +
<br>
 +
<br>
 +
<math>=\frac{2}{j}e^{j3t}-\frac{2}{j}e^{-j3t}+(\frac{1+2j}{2})e^{j2t}+(\frac{1+2j}{2})e^{-j2t}</math>
 +
<br>
 +
<br>
 +
The coefficients can now easily be identified:
 +
<br>
 +
<br>
 +
<math>a_{3}=\frac{2}{j}</math>
 +
<br>
 +
<math>a_{-3}=-\frac{2}{j}</math>
 +
<br>
 +
<math>a_{2}=\frac{1+2j}{2}</math>
 +
<br>
 +
<math>a_{-2}=\frac{1+2j}{2}</math>
 +
<br>
 +
<br>
 +
For all other values of <math>_k\!</math>, <math>a_k=0\!</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:55, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Equations

Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.

Defined Signal

$ x(t)=4sin(3t)+(1+2j)cos(2t)\! $

Solution

The fundamental period $ T\! $ is $ 2\pi\! $. Thus we use the equation $ \omega_0=\frac{2\pi}{T}\! $ to find $ \omega_0=1\! $
To find the value of $ a_0\! $ we simply plug and chug:
$ a_0=\frac{1}{2\pi}\int_0^{2\pi}[4sin(3t)+(1+2j)cos(2t)]e^{0}dt $

$ =\frac{2}{\pi}\int_0^{2\pi}sin(3t)dt+\frac{1+2j}{2\pi}\int_0^{2\pi}cos(2t)dt $

$ =\frac{-2}{3\pi}[cos(3t)]_0^{2\pi}+\frac{1+2j}{4\pi}[sin(2t)]_0^{2\pi} $

$ =\frac{-2}{3\pi}[cos(6\pi)-cos(0)]+\frac{1+2j}{4\pi}[(sin(4\pi)-sin(0)] $

$ =\frac{-2}{3\pi}[0]+\frac{1+2j}{4\pi}[0] $

$ =0\! $

The same method can be used to find each value of $ a_k\! $. To compute the rest of the values I'll use complex exponential identities:


$ x(t)=4sin(3t)+(1+2j)cos(2t)\! $

$ =\frac{2}{j}(e^{j3t}-e^{-j3t})+\frac{1+2j}{2}(e^{j2t}+e^{-j2t}) $

$ =\frac{2}{j}e^{j3t}-\frac{2}{j}e^{-j3t}+(\frac{1+2j}{2})e^{j2t}+(\frac{1+2j}{2})e^{-j2t} $

The coefficients can now easily be identified:

$ a_{3}=\frac{2}{j} $
$ a_{-3}=-\frac{2}{j} $
$ a_{2}=\frac{1+2j}{2} $
$ a_{-2}=\frac{1+2j}{2} $

For all other values of $ _k\! $, $ a_k=0\! $


Back to Practice Problems on Signals and Systems

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett