(Defined Signal)
(Solution)
Line 18: Line 18:
 
To find the value of <math>a_0\!</math> we simply plug and chug:
 
To find the value of <math>a_0\!</math> we simply plug and chug:
 
<br>
 
<br>
<math>a_0=\frac{1}{2\pi}\int_0^{2\pi}[4sin(3t)+(1+6j)cos(2t)]e^{0}dt</math>
+
<math>a_0=\frac{1}{2\pi}\int_0^{2\pi}[4sin(3t)+(1+2j)cos(2t)]e^{0}dt</math>
 
<br>
 
<br>
 
<br>
 
<br>
<math>  =\frac{2}{\pi}\int_0^{2\pi}sin(3t)dt+\frac{1+6j}{2\pi}\int_0^{2\pi}cos(2t)dt</math>
+
<math>  =\frac{2}{\pi}\int_0^{2\pi}sin(3t)dt+\frac{1+2j}{2\pi}\int_0^{2\pi}cos(2t)dt</math>
 
<br>
 
<br>
 
<br>
 
<br>
<math>  =\frac{-2}{3\pi}[cos(3t)]_0^{2\pi}+\frac{1+6j}{4\pi}[sin(2t)]_0^{2\pi}</math>
+
<math>  =\frac{-2}{3\pi}[cos(3t)]_0^{2\pi}+\frac{1+2j}{4\pi}[sin(2t)]_0^{2\pi}</math>
 
<br>
 
<br>
 
<br>
 
<br>
<math>  =\frac{-2}{3\pi}[cos(6\pi)-cos(0)]+\frac{1+6j}{4\pi}[(sin(4\pi)-sin(0)]</math>
+
<math>  =\frac{-2}{3\pi}[cos(6\pi)-cos(0)]+\frac{1+2j}{4\pi}[(sin(4\pi)-sin(0)]</math>
 
<br>
 
<br>
 
<br>
 
<br>
<math>  =\frac{-2}{3\pi}[0]+\frac{1+6j}{4\pi}[0]</math>
+
<math>  =\frac{-2}{3\pi}[0]+\frac{1+2j}{4\pi}[0]</math>
 
<br>
 
<br>
 
<br>
 
<br>
Line 40: Line 40:
 
<br>
 
<br>
 
<br>
 
<br>
<math>x(t)=4sin(3t)+(1+6j)cos(2t)\!</math>
+
<math>x(t)=4sin(3t)+(1+2j)cos(2t)\!</math>
 
<br>
 
<br>
<math>=\frac{4}{2j}(e^{j3t}-e^{-j6t}+\frac{1+6j}{
+
<math>=\frac{4}{2j}(e^{j3t}-e^{-j6t}+\frac{1+2j}{2}(e^{j2t}+e^{-j2t})</math>

Revision as of 17:48, 24 September 2008

Equations

Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.

Defined Signal

$ x(t)=4sin(3t)+(1+2j)cos(2t)\! $

Solution

The fundamental period $ T\! $ is $ 2\pi\! $. Thus we use the equation $ \omega_0=\frac{2\pi}{T}\! $ to find $ \omega_0=1\! $
To find the value of $ a_0\! $ we simply plug and chug:
$ a_0=\frac{1}{2\pi}\int_0^{2\pi}[4sin(3t)+(1+2j)cos(2t)]e^{0}dt $

$ =\frac{2}{\pi}\int_0^{2\pi}sin(3t)dt+\frac{1+2j}{2\pi}\int_0^{2\pi}cos(2t)dt $

$ =\frac{-2}{3\pi}[cos(3t)]_0^{2\pi}+\frac{1+2j}{4\pi}[sin(2t)]_0^{2\pi} $

$ =\frac{-2}{3\pi}[cos(6\pi)-cos(0)]+\frac{1+2j}{4\pi}[(sin(4\pi)-sin(0)] $

$ =\frac{-2}{3\pi}[0]+\frac{1+2j}{4\pi}[0] $

$ =0\! $

The same method can be used to find each value of $ a_k\! $. To compute the rest of the values I'll use complex exponential identities, as that is much less tedious:


$ x(t)=4sin(3t)+(1+2j)cos(2t)\! $
$ =\frac{4}{2j}(e^{j3t}-e^{-j6t}+\frac{1+2j}{2}(e^{j2t}+e^{-j2t}) $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin