(CT SIGNAL)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
+
[[Category:problem solving]]
== CT SIGNAL ==
+
[[Category:ECE301]]
 
+
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 
I chose the signal: <math>f(t) = (3+j)cos(2t) + (10+j)sin(7t)\!</math>
 
I chose the signal: <math>f(t) = (3+j)cos(2t) + (10+j)sin(7t)\!</math>
  
Line 12: Line 17:
  
 
We know that:
 
We know that:
<math>f(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math> where <math>a_k=\frac{1}{T}\int_0^Tf(t)e^{-jk\omega_0t}dt</math>.
+
<math>f(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math> where <math>a_k=\frac{1}{T}\int_0^Tf(t)e^{-jk\omega_{0}t}dt</math>.
  
  
Line 50: Line 55:
  
  
<math>f(t) = ((3+j)\frac{e^{2jt}}{2} + (3+j)\frac{e^{-2jt}}{2} + (10+j)\frac{e^{7jt}}{2j} - (10+j)\frac{e^{-7jt}}{2j}\!</math>
+
<math>f(t) = (3+j)\frac{e^{2jt}}{2} + (3+j)\frac{e^{-2jt}}{2} + (10+j)\frac{e^{7jt}}{2j} - (10+j)\frac{e^{-7jt}}{2j}\!</math>
 
<br>
 
<br>
  
Line 66: Line 71:
  
 
<math>a_{-7} = -\frac{10+j}{2j}\!</math>
 
<math>a_{-7} = -\frac{10+j}{2j}\!</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:55, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


I chose the signal: $ f(t) = (3+j)cos(2t) + (10+j)sin(7t)\! $


FOURIER SERIES COEFFICIENTS

In order to find the fourier series coefficients, we must first understand the operations associated with taking the fourier transform of a signal. The fundamental period of the signal (above) is 2$ \pi\! $. We know that $ \omega_0\! $ = 2$ \pi / T\! $ (where T is the fundamental period). Therefore, the fundamental frequency is $ 1\! $.


We know that: $ f(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $ where $ a_k=\frac{1}{T}\int_0^Tf(t)e^{-jk\omega_{0}t}dt $.


$ a_0=\frac{1}{2\pi}\int_0^{2\pi}[(3+j)cos(2t) + (10+j)sin(7t)]e^{0}dt $


$ a_0=\frac{1}{2\pi}[\frac{(3+j)sin(2t)}{2} + \frac{-(10+j)cos(7t)}{7}]_0^{2\pi} $


$ a_0=\frac{1}{2\pi}[\frac{-(10+j)}{7} - \frac{-(10+j)}{7}] $


$ a_0 = 0\! $


Now, we can use the same process to find $ a_k\! $. However, the most efficient way to solve for the coefficients is to use complex identities. First, we must consider the following complex identities.

$ sin(t) = \frac{e^{jt}-e^{-jt}}{2j}\! $

$ cos(t) = \frac{e^{jt}+e^{-jt}}{2}\! $

When we apply these identities (above) to our original function, we obtain the following equation:

$ f(t) = (3+j)cos(2t) + (10+j)sin(7t)\! $


$ f(t) = (3+j)\frac{e^{2jt}+e^{-2jt}}{2} + (10+j)\frac{e^{7jt}-e^{-7jt}}{2j}\! $


Now, we can proceed to multiply everything out as follows:


$ f(t) = (3+j)\frac{e^{2jt}}{2} + (3+j)\frac{e^{-2jt}}{2} + (10+j)\frac{e^{7jt}}{2j} - (10+j)\frac{e^{-7jt}}{2j}\! $

Therefore, we can conclude that the fourier series coefficients are:


$ a_{2} = \frac{3+j}{2}\! $

$ a_{-2} = \frac{3+j}{2}\! $

$ a_{7} = \frac{10+j}{2j}\! $

$ a_{-7} = -\frac{10+j}{2j}\! $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010