(FOURIER SERIES)
(FOURIER SERIES)
Line 20: Line 20:
 
<br>
 
<br>
  
<math>a_0=\frac{1}{2\pi}[\frac{-(10+j)}{7} - \frac{-(10+j)}{7}]_0^{2\pi}</math>
+
<math>a_0=\frac{1}{2\pi}[\frac{-(10+j)}{7} - \frac{-(10+j)}{7}]</math>
  
  
 
UNDER CONSTRUCTION
 
UNDER CONSTRUCTION

Revision as of 17:54, 24 September 2008

CT SIGNAL

I chose the signal: f(t) = (3+j)cos(2t) + (10+j)sin(7t)

FOURIER SERIES

In order to find the fourier series coefficients, we must first understand the operations associated with taking the fourier transform of a signal. The fundamental period of the signal (above) is 2$ \pi\! $. We know that $ \omega_0\! $ = 2$ \pi / T\! $ (where T is the fundamental period). Therefore, the fundamental frequency is $ 1\! $.


We know that: $ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $ where $ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.


$ a_0=\frac{1}{2\pi}\int_0^{2\pi}[(3+j)cos(2t) + (10+j)sin(7t)]e^{0}dt $

$ a_0=\frac{1}{2\pi}[\frac{(3+j)sin(2t)}{2} + \frac{-(10+j)cos(7t)}{7}]_0^{2\pi} $


$ a_0=\frac{1}{2\pi}[\frac{-(10+j)}{7} - \frac{-(10+j)}{7}] $


UNDER CONSTRUCTION

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva