(New page: == Signal == <math> x(t) = 5cos(2t) + 3sin(4t)\!</math> == Fourier Series == <math> x(t) = 5(\frac{e^{j2t} + e^{-j2t}}{2}) + 3(\frac{e^{j4t} - e^{-j4t}}{2j}) \!</math> We take <math>...)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
== Signal ==
 
== Signal ==
  
Line 30: Line 39:
  
 
According to the Formula, <math> a_k = 0\!</math> whenever <math> K \neq \pm2, \pm 4\!</math>
 
According to the Formula, <math> a_k = 0\!</math> whenever <math> K \neq \pm2, \pm 4\!</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:58, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Signal

$ x(t) = 5cos(2t) + 3sin(4t)\! $


Fourier Series

$ x(t) = 5(\frac{e^{j2t} + e^{-j2t}}{2}) + 3(\frac{e^{j4t} - e^{-j4t}}{2j}) \! $

We take $ \omega_0 = 2\! $

$ x(t) = \frac{5}{2}e^{j2t} + \frac{5}{2}e^{-j2t} + \frac{3}{2j}e^{2j2t} - \frac{3}{2j}e^{-2j2t}\! $

Fourier Coefficients

From the Fourier Series, we determine the coefficients to be:

$ a_1 = a_{-1} = \frac{5}{2}\! $

$ a_2 = a_{-2} = \frac{3}{2j}\! $

Other Coefficients

$ w_0 = 2\! $

$ x(t) = \sum^{\infty}_{k = -\infty} a_ke^{jKw_0t}\! $

where $ a_k = \frac{1}{T}\int{0}^{T} x(t)e^{-jKw_0t}dt\! $

According to the Formula, $ a_k = 0\! $ whenever $ K \neq \pm2, \pm 4\! $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood