(New page: == Signal == <math> x(t) = 5cos(2t) + 3sin(4t)\!</math> == Fourier Series == <math> x(t) = 5(\frac{e^{j2t} + e^{-j2t}}{2}) + 3(\frac{e^{j4t} - e^{-j4t}}{2j}) \!</math> We take <math>...)
 
(Fourier Coefficients)
Line 17: Line 17:
 
From the Fourier Series, we determine the coefficients to be:
 
From the Fourier Series, we determine the coefficients to be:
  
<math> a_1 = a_{-1} = \frac{5}{2}\!</math>
+
<math> a_2 = a_{-2} = \frac{5}{2}\!</math>
  
<math> a_2 = a_{-2} = \frac{3}{2j}\!</math>
+
<math> a_4 = a_{-4} = \frac{3}{2j}\!</math>
  
 
== Other Coefficients ==
 
== Other Coefficients ==

Revision as of 16:57, 24 September 2008

Signal

$ x(t) = 5cos(2t) + 3sin(4t)\! $


Fourier Series

$ x(t) = 5(\frac{e^{j2t} + e^{-j2t}}{2}) + 3(\frac{e^{j4t} - e^{-j4t}}{2j}) \! $

We take $ \omega_0 = 2\! $

$ x(t) = \frac{5}{2}e^{j2t} + \frac{5}{2}e^{-j2t} + \frac{3}{2j}e^{2j2t} - \frac{3}{2j}e^{-2j2t}\! $

Fourier Coefficients

From the Fourier Series, we determine the coefficients to be:

$ a_2 = a_{-2} = \frac{5}{2}\! $

$ a_4 = a_{-4} = \frac{3}{2j}\! $

Other Coefficients

$ w_0 = 2\! $

$ x(t) = \sum^{\infty}_{k = -\infty} a_ke^{jKw_0t}\! $

where $ a_k = \frac{1}{T}\int{0}^{T} x(t)e^{-jKw_0t}dt\! $

According to the Formula, $ a_k = 0\! $ whenever $ K \neq \pm2, \pm 4\! $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn