Line 1: Line 1:
 
== Periodic CT Signal and Its Fourier Coefficients ==
 
== Periodic CT Signal and Its Fourier Coefficients ==
  
Take the signal <math> x(t) = 5cos(2t) - 4sin(2t) </math>.  The graph below proves that it is indeed periodic, with a period <math> T = \pi </math>.
+
Take the signal <math> x(t) = 5cos(2t) - 4sin(5t) </math>.  The graph below proves that it is indeed periodic, with a period <math> T = \pi </math>.
  
[[Image:EE301HW4_ECE301Fall2008mboutin.jpg]]
+
[[Image:ECE301HW4p1_ECE301Fall2008mboutin.jpg]]
  
  
Line 14: Line 14:
 
Therefore,  
 
Therefore,  
  
<math> x(t) = 5 * \frac{1}{2} * (e</math><sup>(j2t)</sup> <math> \,\ + e</math><sup>(-j2t)</sup><math> \,\ ) - 4 * \frac{1}{2j} * (e</math><sup>(j2t)</sup> <math> \,\ - e</math><sup>(-j2t)</sup><math> \,\ )</math>
+
<math> x(t) = 5 * \frac{1}{2} * (e</math><sup>(j2t)</sup> <math> \,\ + e</math><sup>(-j2t)</sup><math> \,\ ) - 4 * \frac{1}{5j} * (e</math><sup>(j5t)</sup> <math> \,\ - e</math><sup>(-j5t)</sup><math> \,\ )</math>
  
The period <math> \,\ T = \pi </math> so if <math> \,\ w_0 = \frac{2\pi}{T} </math>, then <math> \,\ w_0 = 2 </math>.
+
The period <math> \,\ T = 2\pi </math> so if <math> \,\ w_0 = \frac{2\pi}{T} </math>, then <math> \,\ w_0 = 1 </math>.

Revision as of 14:43, 25 September 2008

Periodic CT Signal and Its Fourier Coefficients

Take the signal $ x(t) = 5cos(2t) - 4sin(5t) $. The graph below proves that it is indeed periodic, with a period $ T = \pi $.

ECE301HW4p1 ECE301Fall2008mboutin.jpg


$ \,\ sin(x) = \frac{1}{2j} * (e $(jx) $ \,\ - e $(-jx)$ \,\ ) $

and

$ \,\ cos(x) = \frac{1}{2} * (e $(jx) $ \,\ + e $(-jx)$ \,\ ) $

Therefore,

$ x(t) = 5 * \frac{1}{2} * (e $(j2t) $ \,\ + e $(-j2t)$ \,\ ) - 4 * \frac{1}{5j} * (e $(j5t) $ \,\ - e $(-j5t)$ \,\ ) $

The period $ \,\ T = 2\pi $ so if $ \,\ w_0 = \frac{2\pi}{T} $, then $ \,\ w_0 = 1 $.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva