Line 9: Line 9:
  
 
== Computation ==
 
== Computation ==
First we want to compute the period (T) for this function.  The period of sin and cos is 2pi, therefore the combined period is also 2pi.
+
First we want to compute the period (T) for this function.  The period of sin and cos is <math>2\pi</math>, therefore the combined period is also <math>2\pi</math>.
  
 
Next we compute the coefficients.  Since we are using sin and cos, we can use their equivalent formulas.
 
Next we compute the coefficients.  Since we are using sin and cos, we can use their equivalent formulas.
Line 16: Line 16:
  
  
<math> = (5+3j)(\frac{e^{4jt} +e^{-4jt}}{2}) + (1+2j)(\frac{e^{j3t} + e^{-j3t}}{2j})</math>
+
<math> = (5+3j)(\frac{e^{4jt} +e^{-4jt}}{2}) + (1+2j)(\frac{e^{j3t} - e^{-j3t}}{2j})</math>
  
<math> = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + \frac{1+2j}{2j}e^{j3t} + \frac{1+2j}{2j}e^{-3jt}</math>
+
<math> = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + \frac{1+2j}{2j}e^{j3t} - \frac{1+2j}{2j}e^{-3jt}</math>
 +
 
 +
multiplying by complex conjugate we get:
 +
 
 +
<math> = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + (1-\frac{j}{2})e^{j3t} - (1-\frac{j}{2})e^{-j3t}</math>
 +
 
 +
since <math>\omega_0=\frac{2\pi}{T}</math> and <math>T=2\pi</math> then <math>\omega_0=1</math>
 +
 
 +
Therefore for the first term k=4 and for the second term k=-4.  Likewise, for the third and fourth terms k=3 and k=-3 respectively.  Therefore our coefficients are:
 +
 
 +
<math>a_3 = a_{-3} = \frac{5+3j}{2}</math>
 +
 
 +
And <math>a_3 = a_{-4} = (1-\frac{1}{2})</math>
 +
 
 +
And <math>a_k = 0</math> else

Revision as of 14:25, 23 September 2008

The Formulas for Fourier Series

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

where $ a_k=\frac{1}{T} \int_0^Tx(t)e^{-jk\omega_ot}dt $

Chosen Formula

$ x(t) = (5+3j)cos(4t) + (1+2j)sin(3t) $

Computation

First we want to compute the period (T) for this function. The period of sin and cos is $ 2\pi $, therefore the combined period is also $ 2\pi $.

Next we compute the coefficients. Since we are using sin and cos, we can use their equivalent formulas.

$ x(t) = (5+3j)cos(4t) + (1+2j)sin(3t) $


$ = (5+3j)(\frac{e^{4jt} +e^{-4jt}}{2}) + (1+2j)(\frac{e^{j3t} - e^{-j3t}}{2j}) $

$ = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + \frac{1+2j}{2j}e^{j3t} - \frac{1+2j}{2j}e^{-3jt} $

multiplying by complex conjugate we get:

$ = \frac{5+3j}{2}e^{4jt} + \frac{5+3j}{2}e^{-4jt} + (1-\frac{j}{2})e^{j3t} - (1-\frac{j}{2})e^{-j3t} $

since $ \omega_0=\frac{2\pi}{T} $ and $ T=2\pi $ then $ \omega_0=1 $

Therefore for the first term k=4 and for the second term k=-4. Likewise, for the third and fourth terms k=3 and k=-3 respectively. Therefore our coefficients are:

$ a_3 = a_{-3} = \frac{5+3j}{2} $

And $ a_3 = a_{-4} = (1-\frac{1}{2}) $

And $ a_k = 0 $ else

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva