(New page: ==CT Signal== Choose the CT signal to be <math>x(t)=\frac(1 j)cos(4\pit)+5sin(5\pit)</math>)
 
Line 1: Line 1:
 
==CT Signal==
 
==CT Signal==
Choose the CT signal to be <math>x(t)=\frac(1 j)cos(4\pit)+5sin(5\pit)</math>
+
Choose the CT signal to be <math>x(t)=4cos(4t)+(2+12j)sin(12t)</math>
 +
 
 +
==Forier Series Equations==
 +
 
 +
<math> x(t) = \sum^{\infty}_{k = -\infty} a_ke^{jK{w_0}t}\!</math>   
 +
 
 +
where    <math> a_k = \frac{1}{T}\int_{0}^{T} x(t)e^{-jK{w_0}t}dt\!</math>
 +
 
 +
==Finding The Fourier Series Coefficients==
 +
 
 +
<math>x(t)=4cos(4t)+(2+12j)sin(12t)=4(\frac{e^{j4t}+e^{-j4t}}{2})+(2+12j)(\frac{e^{j12t}-e^{-j12t}}{2j})</math>
 +
 
 +
<math>x(t)=2e^{j4t}+2e^{-j4t}+\frac{2+12j}{2j}e^{j12t}-\frac{2+12j}{2j}e^{-j12t}=2e^{j4t}+2e^{-j4t}+(6-j)e^{j12t}-(6-j)e^{-j12t}</math>
 +
 
 +
<math>x(t)=2e^{1(j4t)}+2e^{-1(j4t)}+(6-j)e^{3(j4t)}+(j-6)e^{-3(j4t)}</math>
 +
 
 +
x(t) is written as a sum of exponential functions, so take the coefficients of those.
 +
 
 +
<math>a_1</math> is the coefficient of <math>2e^{j4t}</math> which is 2.
 +
 
 +
<math>a_{-1}</math> is the coefficient of <math>2e^{-j4t}</math> which is 2.
 +
 
 +
<math>a_3</math> is the coefficient of <math>(6-j)e^{3(j4t)}</math> which is 6-j.
 +
 
 +
<math>a_{-3}</math> is the coefficient of <math>(j-6)e^{-3(j4t)}</math> which is j-6.
 +
 
 +
<math>a_0</math> is the average value of the function over one period.    <math>a_0= \frac{1}{T}\int_{0}^{T} x(t)e^{0}dt\!</math>.
 +
 
 +
<math>w_0</math> is 4, so the period is <math>T=\frac{2\pi}{4}=\frac{\pi}{2}</math>
 +
 
 +
<math>a_0= \frac{1}{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}} 4cos(4t)+(2+12j)sin(12t)dt\!</math>
 +
 
 +
<math>\frac{2}{\pi}(sin(4t)|_{0}^{\frac{\pi}{2}}-(\frac{1}{6}+j)cos(12t)|_{0}^{\frac{\pi}{2}})\!</math>
 +
 
 +
<math>\frac{2}{\pi}(sin(2\pi)-sin(0)-(\frac{1}{6}+j)(cos(6\pi)-cos(0)))\!</math>
 +
 
 +
<math>a_0=0</math>

Revision as of 08:57, 25 September 2008

CT Signal

Choose the CT signal to be $ x(t)=4cos(4t)+(2+12j)sin(12t) $

Forier Series Equations

$ x(t) = \sum^{\infty}_{k = -\infty} a_ke^{jK{w_0}t}\! $

where $ a_k = \frac{1}{T}\int_{0}^{T} x(t)e^{-jK{w_0}t}dt\! $

Finding The Fourier Series Coefficients

$ x(t)=4cos(4t)+(2+12j)sin(12t)=4(\frac{e^{j4t}+e^{-j4t}}{2})+(2+12j)(\frac{e^{j12t}-e^{-j12t}}{2j}) $

$ x(t)=2e^{j4t}+2e^{-j4t}+\frac{2+12j}{2j}e^{j12t}-\frac{2+12j}{2j}e^{-j12t}=2e^{j4t}+2e^{-j4t}+(6-j)e^{j12t}-(6-j)e^{-j12t} $

$ x(t)=2e^{1(j4t)}+2e^{-1(j4t)}+(6-j)e^{3(j4t)}+(j-6)e^{-3(j4t)} $

x(t) is written as a sum of exponential functions, so take the coefficients of those.

$ a_1 $ is the coefficient of $ 2e^{j4t} $ which is 2.

$ a_{-1} $ is the coefficient of $ 2e^{-j4t} $ which is 2.

$ a_3 $ is the coefficient of $ (6-j)e^{3(j4t)} $ which is 6-j.

$ a_{-3} $ is the coefficient of $ (j-6)e^{-3(j4t)} $ which is j-6.

$ a_0 $ is the average value of the function over one period. $ a_0= \frac{1}{T}\int_{0}^{T} x(t)e^{0}dt\! $.

$ w_0 $ is 4, so the period is $ T=\frac{2\pi}{4}=\frac{\pi}{2} $

$ a_0= \frac{1}{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}} 4cos(4t)+(2+12j)sin(12t)dt\! $

$ \frac{2}{\pi}(sin(4t)|_{0}^{\frac{\pi}{2}}-(\frac{1}{6}+j)cos(12t)|_{0}^{\frac{\pi}{2}})\! $

$ \frac{2}{\pi}(sin(2\pi)-sin(0)-(\frac{1}{6}+j)(cos(6\pi)-cos(0)))\! $

$ a_0=0 $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison