(Ao)
Line 17: Line 17:
 
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt</math>
 
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt</math>
 
==A1==
 
==A1==
 +
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{1}dt</math>
 
==A2==
 
==A2==
 +
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{2}dt</math>
 
==A-1==
 
==A-1==
 +
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-1}dt</math>
 
==A-2==
 
==A-2==
 +
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-2}dt</math>

Revision as of 08:55, 26 September 2008

Equations

Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $

From Phil Cannon

Input Signal

$ x(t)=(1+j)cos(3t)+14sin(6t)\! $

Ao

$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt $

A1

$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{1}dt $

A2

$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{2}dt $

A-1

$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-1}dt $

A-2

$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-2}dt $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett