(13 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
<math>a_k = \frac{1}{N}\displaystyle\sum_{n=0}^{N-1}x[n]e^{-jk\frac{2\pi}{N}n}</math>
 
<math>a_k = \frac{1}{N}\displaystyle\sum_{n=0}^{N-1}x[n]e^{-jk\frac{2\pi}{N}n}</math>
  
Let us look for the Fourier series coefficients for the DT signal <math>x[n] = cos(3\pi n)</math>
+
Let us look for the Fourier series coefficients for the DT signal <big><math>x[n] = cos(3\pi n)</math></big>
  
 
<math>x[n] = cos(5\pi n) = \frac{e^{j5\pi n}+e^{-j5\pi n}}{2} = \frac{1}{2}e^{j4\pi n}e^{j\pi n} + \frac{1}{2}e^{-j4\pi n}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{j\pi n} </math>
 
<math>x[n] = cos(5\pi n) = \frac{e^{j5\pi n}+e^{-j5\pi n}}{2} = \frac{1}{2}e^{j4\pi n}e^{j\pi n} + \frac{1}{2}e^{-j4\pi n}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{j\pi n} </math>
 +
 +
Finally,
 +
 +
<big><math>x[n] = 1e^{j\pi n}</math></big>
 +
 +
Comparing the simplified x[n] with the fourier series, we can get <math>k\frac{2\pi}{N} = \pi n</math>
 +
 +
N = 2k, where k is the smallest integer for N to be an integer. Therefore k = 1 and N =2.
 +
 +
<math>a_0 = \frac{1}{2}\displaystyle\sum_{n=0}^{1}e^{j\pi n} = \frac{1}{2}e^{j\pi 0} + \frac{1}{2}e^{j\pi} = 0  </math>
 +
 +
<math>a_1 = \frac{1}{2}\displaystyle\sum_{n=0}^{1}e^{j\pi n}e^{-j\pi n} = 1 </math>
 +
 +
Therefore, <Big><math>x[n] = a_0e^{j\pi n} + a_1e^{j\pi n} = e^{j\pi n}</math></Big>

Latest revision as of 14:22, 26 September 2008

For periodic DT signal, x[n] with fundamental period N:

$ x[n]=\displaystyle\sum_{k=0}^{n-1}a_ke^{jk\frac{2\pi}{N}n} $

The Fourier series coefficients can be calculated with:

$ a_k = \frac{1}{N}\displaystyle\sum_{n=0}^{N-1}x[n]e^{-jk\frac{2\pi}{N}n} $

Let us look for the Fourier series coefficients for the DT signal $ x[n] = cos(3\pi n) $

$ x[n] = cos(5\pi n) = \frac{e^{j5\pi n}+e^{-j5\pi n}}{2} = \frac{1}{2}e^{j4\pi n}e^{j\pi n} + \frac{1}{2}e^{-j4\pi n}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{j\pi n} $

Finally,

$ x[n] = 1e^{j\pi n} $

Comparing the simplified x[n] with the fourier series, we can get $ k\frac{2\pi}{N} = \pi n $

N = 2k, where k is the smallest integer for N to be an integer. Therefore k = 1 and N =2.

$ a_0 = \frac{1}{2}\displaystyle\sum_{n=0}^{1}e^{j\pi n} = \frac{1}{2}e^{j\pi 0} + \frac{1}{2}e^{j\pi} = 0 $

$ a_1 = \frac{1}{2}\displaystyle\sum_{n=0}^{1}e^{j\pi n}e^{-j\pi n} = 1 $

Therefore, $ x[n] = a_0e^{j\pi n} + a_1e^{j\pi n} = e^{j\pi n} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva