Line 14: Line 14:
  
 
<big><math>x[n] = 1e^{j\pi n}</math></big>
 
<big><math>x[n] = 1e^{j\pi n}</math></big>
 +
 +
Compare to <math>x[n]=\displaystyle\sum_{k=0}^{n-1}a_ke^{jk\frac{2\pi}{N}n}</math>
 +
 +
<big><math>k\frac{2\pi}{N} = \pi n</math></big>
 +
 +
<math>N = 2k</math> where k is the smallest integer that N is an integer.
 +
 +
So k = 1, N = 2.

Revision as of 18:39, 23 September 2008

For periodic DT signal, x[n] with fundamental period N:

$ x[n]=\displaystyle\sum_{k=0}^{n-1}a_ke^{jk\frac{2\pi}{N}n} $

The Fourier series coefficients can be calculated with:

$ a_k = \frac{1}{N}\displaystyle\sum_{n=0}^{N-1}x[n]e^{-jk\frac{2\pi}{N}n} $

Let us look for the Fourier series coefficients for the DT signal $ x[n] = cos(3\pi n) $

$ x[n] = cos(5\pi n) = \frac{e^{j5\pi n}+e^{-j5\pi n}}{2} = \frac{1}{2}e^{j4\pi n}e^{j\pi n} + \frac{1}{2}e^{-j4\pi n}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{-j\pi n} = \frac{1}{2}e^{j\pi n} + \frac{1}{2}e^{j\pi n} $

Finally,

$ x[n] = 1e^{j\pi n} $

Compare to $ x[n]=\displaystyle\sum_{k=0}^{n-1}a_ke^{jk\frac{2\pi}{N}n} $

$ k\frac{2\pi}{N} = \pi n $

$ N = 2k $ where k is the smallest integer that N is an integer.

So k = 1, N = 2.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood