m (Summary)
(Summary)
Line 41: Line 41:
 
From the above math, we can determine all the coefficients:
 
From the above math, we can determine all the coefficients:
 
<math> \ \ a_{-2} = 1; \ \ a_{-1} = 2; \ \ a_{0} = 0; \ \  a_1 = 2;\ \ a_{2} = -1 </math>
 
<math> \ \ a_{-2} = 1; \ \ a_{-1} = 2; \ \ a_{0} = 0; \ \  a_1 = 2;\ \ a_{2} = -1 </math>
 +
 +
The fundamental period of the function is found from: <math>e^{j\omega_0}</math> where he period T = <math>{2\pi \over \omega_o}</math>
 +
 +
Thus, the fundamental period = <math> {2\pi \over 3} </math>

Revision as of 13:48, 25 September 2008

<< Back to Homework 4

Homework 4 Ben Horst: 4.1  :: 4.2  :: 4.3:: 4.4:: 4.5


Signal

$ x(t) = 2\sin(6t) + 4\cos(3t) $

Fourier Series

$ x(t) = \sum_{k=- \infty }^ \infty a_ke^{jk\omega_0t} $

By Euler's formula, we have: $ x(t)=2({ e^{j 6t} + -e^{-j6t} \over 2j}) + 4({ e^{j3t} + e^{-j3t} \over 2 }) $

$ x(t) = ({ e^{j 6t} + -e^{-j6t} \over j}) + 2e^{j3t} + 2e^{-j3t} $

$ x(t) = -e^{2 j3t} + e^{-2 j3t} + 2e^{1 j3t} + 2e^{-1 j3t} $

Ordering our k's to form a proper series:

$ x(t)= e^{(-2) j3t} + 2e^{(-1)j3t} + 0 + 2e^{(1) j3t} - e^{(2) j3t} $

And making sure we don't forget about $ a_0 $:

$ x(t)= (1)e^{(-2) j3t} + (2)e^{(-1)j3t} + (0)e^{(0)j3t} + (2)e^{(1) j3t} + (-1)e^{(2) j3t} $

Summary

From the above math, we can determine all the coefficients: $ \ \ a_{-2} = 1; \ \ a_{-1} = 2; \ \ a_{0} = 0; \ \ a_1 = 2;\ \ a_{2} = -1 $

The fundamental period of the function is found from: $ e^{j\omega_0} $ where he period T = $ {2\pi \over \omega_o} $

Thus, the fundamental period = $ {2\pi \over 3} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang