(wrapping it up. saving progress)
Line 5: Line 5:
  
 
==Signal==
 
==Signal==
x(t) = 2sin(6t) + 4cos(3t)
+
<math>x(t) = 2\sin(6t) + 4\cos(3t)</math>
  
 
==Fourier Series==
 
==Fourier Series==
Line 36: Line 36:
 
x(t)= (1)e^{(-2) j3t} + (2)e^{(-1)j3t} + (0)e^{(0)j3t} + (2)e^{(1) j3t} + (-1)e^{(2) j3t}
 
x(t)= (1)e^{(-2) j3t} + (2)e^{(-1)j3t} + (0)e^{(0)j3t} + (2)e^{(1) j3t} + (-1)e^{(2) j3t}
 
</math>
 
</math>
 +
 +
==Summary==
 +
 +
From the above math, we can determine all the coefficients:
 +
<math> a_{-2} = 1; a_{-1} = -1; a_{0} = 1;  a_{2} = -1 </math>

Revision as of 13:18, 25 September 2008

<< Back to Homework 4

Homework 4 Ben Horst: 4.1  :: 4.2  :: 4.3:: 4.4:: 4.5


Signal

$ x(t) = 2\sin(6t) + 4\cos(3t) $

Fourier Series

$ x(t) = \sum_{k=- \infty }^ \infty a_ke^{jk\omega_0t} $

By Euler's formula, we have: $ x(t)=2({ e^{j 6t} + -e^{-j6t} \over 2j}) + 4({ e^{j3t} + e^{-j3t} \over 2}) $

$ x(t)=({ e^{j 6t} + -e^{-j6t} \over j}) + 2e^{j3t} + 2e^{-j3t} $

$ x(t)= -e^{2 j3t} + e^{-2 j3t} + 2e^{1 j3t} + 2e^{-1 j3t} $

Ordering our k's to form a proper series:

$ x(t)= e^{(-2) j3t} + 2e^{(-1)j3t} + 0 + 2e^{(1) j3t} - e^{(2) j3t} $

And making sure we don't forget about $ a_0 $:

$ x(t)= (1)e^{(-2) j3t} + (2)e^{(-1)j3t} + (0)e^{(0)j3t} + (2)e^{(1) j3t} + (-1)e^{(2) j3t} $

Summary

From the above math, we can determine all the coefficients: $ a_{-2} = 1; a_{-1} = -1; a_{0} = 1; a_{2} = -1 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood