m (added topnav for my pages)
 
(14 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 +
 
[[Homework 4_ECE301Fall2008mboutin|<< Back to Homework 4]]
 
[[Homework 4_ECE301Fall2008mboutin|<< Back to Homework 4]]
  
Homework 4 Ben Horst:  [[HW4.1 Ben Horst _ECE301Fall2008mboutin| 4.1]] :: [[HW4.2 Ben Horst _ECE301Fall2008mboutin| 4.2]] ::  [[HW4.3 Ben Horst _ECE301Fall2008mboutin| 4.3]]::  [[HW4.4 Ben Horst _ECE301Fall2008mboutin| 4.4]]::  [[HW4.5 Ben Horst _ECE301Fall2008mboutin| 4.5]]
+
Homework 4 Ben Horst:  [[HW4.1 Ben Horst _ECE301Fall2008mboutin| 4.1]] :: [[HW4.3 Ben Horst _ECE301Fall2008mboutin| 4.3]] ::  [[HW4.5 Ben Horst _ECE301Fall2008mboutin| 4.5]]
 +
----
 +
 
 +
==Signal==
 +
<math>x(t) = 2\sin(6t) + 4\cos(3t)</math>
 +
 
 +
==Fourier Series==
 +
<math>
 +
x(t) = \sum_{k=- \infty }^ \infty a_ke^{jk\omega_0t}
 +
</math>
 +
 
 +
By Euler's formula, we have:
 +
<math>
 +
x(t)=2({ e^{j 6t} + -e^{-j6t} \over 2j}) + 4({ e^{j3t} + e^{-j3t} \over 2 })
 +
</math>
 +
 
 +
<math>
 +
x(t) = ({ e^{j 6t} + -e^{-j6t} \over j}) + 2e^{j3t} + 2e^{-j3t}
 +
</math>
 +
 
 +
<math>
 +
x(t) = -e^{2 j3t} + e^{-2 j3t} + 2e^{1 j3t} + 2e^{-1 j3t}
 +
</math>
 +
 
 +
Ordering our k's to form a proper series:
 +
 
 +
<math>
 +
x(t)= e^{(-2) j3t} + 2e^{(-1)j3t} + 2e^{(1) j3t} - e^{(2) j3t}
 +
</math>
 +
 
 +
And making sure we don't forget about <math>a_0</math>:
 +
 
 +
<math>
 +
x(t)= (1)e^{(-2) j3t} + (2)e^{(-1)j3t} + (0)e^{(0)j3t} + (2)e^{(1) j3t} + (-1)e^{(2) j3t}
 +
</math>
 +
 
 +
==Summary==
 +
 
 +
From the above math, we can determine all the coefficients:
 +
<math> \ \ a_{-2} = 1; \ \ a_{-1} = 2; \ \ a_{0} = 0; \ \ a_1 = 2;\ \ a_{2} = -1 </math>
 +
 
 +
The fundamental period of the function is found from: <math>e^{j\omega_0}</math> where he period T = <math>{2\pi \over \omega_o}</math>
 +
 
 +
Thus, the fundamental period = <math> {2\pi \over 3} </math>
 
----
 
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:54, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"



<< Back to Homework 4

Homework 4 Ben Horst: 4.1 :: 4.3 :: 4.5


Signal

$ x(t) = 2\sin(6t) + 4\cos(3t) $

Fourier Series

$ x(t) = \sum_{k=- \infty }^ \infty a_ke^{jk\omega_0t} $

By Euler's formula, we have: $ x(t)=2({ e^{j 6t} + -e^{-j6t} \over 2j}) + 4({ e^{j3t} + e^{-j3t} \over 2 }) $

$ x(t) = ({ e^{j 6t} + -e^{-j6t} \over j}) + 2e^{j3t} + 2e^{-j3t} $

$ x(t) = -e^{2 j3t} + e^{-2 j3t} + 2e^{1 j3t} + 2e^{-1 j3t} $

Ordering our k's to form a proper series:

$ x(t)= e^{(-2) j3t} + 2e^{(-1)j3t} + 2e^{(1) j3t} - e^{(2) j3t} $

And making sure we don't forget about $ a_0 $:

$ x(t)= (1)e^{(-2) j3t} + (2)e^{(-1)j3t} + (0)e^{(0)j3t} + (2)e^{(1) j3t} + (-1)e^{(2) j3t} $

Summary

From the above math, we can determine all the coefficients: $ \ \ a_{-2} = 1; \ \ a_{-1} = 2; \ \ a_{0} = 0; \ \ a_1 = 2;\ \ a_{2} = -1 $

The fundamental period of the function is found from: $ e^{j\omega_0} $ where he period T = $ {2\pi \over \omega_o} $

Thus, the fundamental period = $ {2\pi \over 3} $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett