(New page: == 1 ==)
 
 
(17 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
== Define a Periodic CT signal and compute its Fourier series coefficients ==
  
== 1 ==
+
 
 +
Consider the following CT signal:
 +
 
 +
 
 +
x(t) such that
 +
 
 +
<math> ak = \frac{1}{T} \int_{0}^{T} x(t) * e^{-j*k} * \frac{2*\pi}{T} *dt </math>
 +
 
 +
 
 +
 
 +
<math> x(t) = cos(2* \pi * t) * cos(4* \pi * t) </math>
 +
 
 +
 
 +
<math> = \frac{e^{j*2*\pi*t} + e^{-j*2*\pi*t}}{2} </math>
 +
 
 +
 
 +
<math> = \frac{1*e^{j*6*\pi*t}}{4} + \frac{e^{-j*2*\pi*t}}{4} + \frac{e^{j*2*\pi*t}}{4} + \frac{e^{-j*6*\pi*t}}{4} </math>
 +
 
 +
 
 +
K = 3
 +
 
 +
K= -1
 +
 
 +
K= 1
 +
 
 +
K= -3
 +
 
 +
 
 +
<math> a^{3} = \frac{1}{4} </math>
 +
 +
<math> a^{-1} = \frac{1}{4} </math>
 +
 
 +
<math> a^{1} = \frac{1}{4} </math>
 +
 
 +
<math> a^{-3} = \frac{1}{4} </math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:58, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Define a Periodic CT signal and compute its Fourier series coefficients

Consider the following CT signal:


x(t) such that

$ ak = \frac{1}{T} \int_{0}^{T} x(t) * e^{-j*k} * \frac{2*\pi}{T} *dt $


$ x(t) = cos(2* \pi * t) * cos(4* \pi * t) $


$ = \frac{e^{j*2*\pi*t} + e^{-j*2*\pi*t}}{2} $


$ = \frac{1*e^{j*6*\pi*t}}{4} + \frac{e^{-j*2*\pi*t}}{4} + \frac{e^{j*2*\pi*t}}{4} + \frac{e^{-j*6*\pi*t}}{4} $


K = 3

K= -1

K= 1

K= -3


$ a^{3} = \frac{1}{4} $

$ a^{-1} = \frac{1}{4} $

$ a^{1} = \frac{1}{4} $

$ a^{-3} = \frac{1}{4} $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett