(CT Signal and its Fourier Series Coefficients)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==CT Signal and its Fourier Series Coefficients==
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
 
Let the signal be
 
Let the signal be
<math>\ x(t) = \cos(3t) \sin(9t) </math>
+
<math>\ x(t) = \cos(2t\pi /3) \sin(2t \pi /9) </math>
which has a fundamental frequency of  
+
 
 +
which has a fundamental frequency of 9
 
Now computing its coefficients:
 
Now computing its coefficients:
  
<math>\ x(t)= (\frac{e^{j3t} + e^{-j3t}}{2}) (\frac{e^{j9t} - e^{-j9t}}{2j}) </math>
+
<math>\ x(t)= (\frac{e^{j2t\pi /3} + e^{-j 2t\pi/ 3}}{2}) (\frac{e^{j 2t\pi /9} - e^{-j2t \pi /9}}{2j}) </math>
  
  
  
<math>\ x(t)= \frac{e^{j12t} + e^{-j6t} + e^{j6t} - e^{-j12t}}{4j} </math>
+
<math>\ x(t)= \frac{e^{-j4t\pi /9} - e^{-j8t\pi /9} + e^{j8t\pi /9} - e^{j4t\pi /9}}{4j} </math>
  
 
Now rearranging the terms:
 
Now rearranging the terms:
  
<math>\ x(t)= \frac{e^{j12t} + e^{-j12t} + e^{j6t} - e^{-j6t}}{4j} </math>
+
<math>\ x(t)= \frac{-e^{j4t\pi /9} + e^{-j4t\pi /9} + e^{j8t\pi /9} - e^{j8t\pi /9}}{4j} </math>
 +
 
 +
<math>\ x(t)= \frac{-e^{j(2)2t\pi /9} + e^{-j(2)2t\pi /9} + e^{j(4)2t\pi /9} - e^{j(4)2t\pi /9}}{4j} </math>
 +
 
 +
Now, the Fourier coefficients can clearly be seen:
 +
 
 +
<math>\ a_{2}= \frac{-1}{4j} = \frac{j}{4}</math>
 +
 
 +
<math>a_{-2}= \frac{1}{4j} = \frac{-j}{4}</math>
 +
 
 +
<math>a_{4}= \frac{1}{4j} = \frac{-j}{4}</math>
 +
 
 +
<math>a_{-4}= \frac{-1}{4j} = \frac{j}{4}</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:59, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Let the signal be $ \ x(t) = \cos(2t\pi /3) \sin(2t \pi /9) $

which has a fundamental frequency of 9 Now computing its coefficients:

$ \ x(t)= (\frac{e^{j2t\pi /3} + e^{-j 2t\pi/ 3}}{2}) (\frac{e^{j 2t\pi /9} - e^{-j2t \pi /9}}{2j}) $


$ \ x(t)= \frac{e^{-j4t\pi /9} - e^{-j8t\pi /9} + e^{j8t\pi /9} - e^{j4t\pi /9}}{4j} $

Now rearranging the terms:

$ \ x(t)= \frac{-e^{j4t\pi /9} + e^{-j4t\pi /9} + e^{j8t\pi /9} - e^{j8t\pi /9}}{4j} $

$ \ x(t)= \frac{-e^{j(2)2t\pi /9} + e^{-j(2)2t\pi /9} + e^{j(4)2t\pi /9} - e^{j(4)2t\pi /9}}{4j} $

Now, the Fourier coefficients can clearly be seen:

$ \ a_{2}= \frac{-1}{4j} = \frac{j}{4} $

$ a_{-2}= \frac{1}{4j} = \frac{-j}{4} $

$ a_{4}= \frac{1}{4j} = \frac{-j}{4} $

$ a_{-4}= \frac{-1}{4j} = \frac{j}{4} $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang