(New page: = Homework 3 Solutions = == Question 1 == a) <u>Invertibility</u> Let <math>x_1[n]=0</math> for all <math>n</math> be an input to the given system. Then, its response is <math>y_1[n]=0<...)
 
Line 19: Line 19:
 
<u>Causality:</u>
 
<u>Causality:</u>
  
The output <math>y[n]</math> depends only on the current (<math>x[n]</math>) and past (<math>x[n-1]</math>) values of the input.
+
The output <math>y[n]</math> depends only on the current ( <math>x[n]</math> ) and past ( <math>x[n-1]</math> ) values of the input.
  
 
Hence, the given system is '''causal'''.
 
Hence, the given system is '''causal'''.
Line 35: Line 35:
 
Let <math>x_1[n]</math> be an input to the given system. Then its response is <math>y_1[n]=x_1[n]x_1[n-1]</math>.
 
Let <math>x_1[n]</math> be an input to the given system. Then its response is <math>y_1[n]=x_1[n]x_1[n-1]</math>.
  
Now, let <math>x_2[n]=ax_1[n]</math> be an input to the system, where <math>a</math> can be any number. Then its response is <math>y_2[n]=(a^2x_1[n]x_1[n-1])\neq ay_1[n]</math>, then the system is '''not linear'''.
+
Now, let <math>x_2[n]=ax_1[n]</math> be an input to the system, where <math>a</math> can be any number. Then its response is <math class="inline">y_2[n]=a^2x_1[n]x_1[n-1]\neq ay_1[n]</math>, then the system is '''not linear'''.
  
 
<u>Time invariance</u>
 
<u>Time invariance</u>
  
Let <math>x_1[n]</math> be an input to the system. Then <math>y_1[n]=x[n]x[n-1]</math> is its response.
+
Let <math>x_1[n]</math> be an input to the system. Then <math>y_1[n]=x_1[n]x_1[n-1]</math> is its response.
  
 
Now, let <math>x_2[n]=x_1[n-n_0]</math> be an input to the system, where <math>n_0</math> can be any number. Then, <math>y_2[n]=x_1[n-n_0]x_1[n-1-n_0]=y_1[n-n_0]</math>.
 
Now, let <math>x_2[n]=x_1[n-n_0]</math> be an input to the system, where <math>n_0</math> can be any number. Then, <math>y_2[n]=x_1[n-n_0]x_1[n-1-n_0]=y_1[n-n_0]</math>.
Line 45: Line 45:
 
Hence the system is '''time invariant'''.
 
Hence the system is '''time invariant'''.
  
b)
+
b) <u>Invertibility</u>
 +
 
 +
Let <math>x_1(t)=0</math> for all <math>t</math> be an input to the given system. Then, its response is <math>y_1(t)=0</math> for all <math>t</math>.
 +
 
 +
Let <math>x_2(t)=\delta (t-2)</math> be an input to the given system. Then, its response is <math>y_2(t)=0</math> for all <math>t</math> since <math class="inline">-1\leq\sin(t)\leq 1</math>.
 +
 
 +
Since <math class="inline">x_2(t)\neq x_1(t)</math> and <math>y_2(t)=y_1(t)</math>, then the system is '''not invertible'''.
 +
 
 +
<u>Memory:</u>
 +
 
 +
For <math>t=-\pi/2</math>, we have <math>y(-\pi/2)=x(-1)</math>. However, <math>-\pi/2\leq -1</math>.
 +
 +
Then the output <math>y(t)</math> depends on future values of the input <math>x(t)</math>.
 +
 
 +
Hence, we deduce that system has '''memory'''.
 +
 
 +
<u>Causality:</u>
 +
 
 +
Using the same example for the memory part, we can say that the system is '''non-causal'''.
 +
 
 +
<u>Stability</u>
 +
 
 +
Let <math>x(t)</math> be a bounded signal by some number B, i.e. <math>|x(t)|<B</math>  for all <math>t</math>.
 +
 
 +
Then the response to <math>x(t)</math> is obviously always bounded as such: <math>|y(t)|<B</math> for all <math>t</math>.
 +
 
 +
Thus the given system is '''stable'''.
 +
 
 +
<u>Linearity</u>
 +
 
 +
Let <math>x_1(t)</math> be an input to the given system. Then its response is <math>y_1(t)=x_1(\sin(t))</math>.
 +
 
 +
Let <math>x_2(t)</math> be an input to the given system. Then its response is <math>y_2(t)=x_2(\sin(t))</math>.
 +
 
 +
Now, let <math>x_3(t)=ax_1(t)+bx_2(t)</math> be an input to the system, where <math>a</math> and <math>b</math> can be any number. Then its response is <math>y_2(t)=ax_1(\sin(t))+bx_2(\sin(t))=ay_1(t)+by_2(t)</math>.
 +
 
 +
Hence the system is '''linear'''.
 +
 
 +
<u>Time invariance</u>
 +
 
 +
Let <math>x_1(t)</math> be an input to the system. Then <math>y_1(t)=x_1(\sin(t))</math> is its response.
 +
 
 +
Now, let <math>x_2(t)=x_1(t-t_0)</math> be an input to the system, where <math>t_0</math> can be any number. Then, <math>y_2(t)=x_1(\sin(t-t_0))=y_1(t-t_0)</math>.
 +
 
 +
Hence the system is '''time invariant'''.

Revision as of 09:32, 8 February 2011

Homework 3 Solutions

Question 1

a) Invertibility

Let $ x_1[n]=0 $ for all $ n $ be an input to the given system. Then, its response is $ y_1[n]=0 $ for all $ n $.

Let $ x_2[n]=\delta [n] $ be an input to the given system. Then, its response is $ y_2[n]=0 $ for all $ n $.

Since $ x_2[n]\neq x_1[n] $ and $ y_2[n]=y_1[n] $, then the system is not invertible.

Memory:

The output $ y[n] $ depends on past values of $ x[n] $, since we have $ x[n-1] $ in the system equation.

Hence, we deduce that system has memory.

Causality:

The output $ y[n] $ depends only on the current ( $ x[n] $ ) and past ( $ x[n-1] $ ) values of the input.

Hence, the given system is causal.

Stability

Let $ x[n] $ be a bounded signal by some number B, i.e. $ |x[n]|<B $ for all $ n $.

Then the response to $ x[n] $ is always bounded as such: $ |y[n]|<B^2 $ for all $ n $.

Thus the given system is stable.

Linearity

Let $ x_1[n] $ be an input to the given system. Then its response is $ y_1[n]=x_1[n]x_1[n-1] $.

Now, let $ x_2[n]=ax_1[n] $ be an input to the system, where $ a $ can be any number. Then its response is $ y_2[n]=a^2x_1[n]x_1[n-1]\neq ay_1[n] $, then the system is not linear.

Time invariance

Let $ x_1[n] $ be an input to the system. Then $ y_1[n]=x_1[n]x_1[n-1] $ is its response.

Now, let $ x_2[n]=x_1[n-n_0] $ be an input to the system, where $ n_0 $ can be any number. Then, $ y_2[n]=x_1[n-n_0]x_1[n-1-n_0]=y_1[n-n_0] $.

Hence the system is time invariant.

b) Invertibility

Let $ x_1(t)=0 $ for all $ t $ be an input to the given system. Then, its response is $ y_1(t)=0 $ for all $ t $.

Let $ x_2(t)=\delta (t-2) $ be an input to the given system. Then, its response is $ y_2(t)=0 $ for all $ t $ since $ -1\leq\sin(t)\leq 1 $.

Since $ x_2(t)\neq x_1(t) $ and $ y_2(t)=y_1(t) $, then the system is not invertible.

Memory:

For $ t=-\pi/2 $, we have $ y(-\pi/2)=x(-1) $. However, $ -\pi/2\leq -1 $.

Then the output $ y(t) $ depends on future values of the input $ x(t) $.

Hence, we deduce that system has memory.

Causality:

Using the same example for the memory part, we can say that the system is non-causal.

Stability

Let $ x(t) $ be a bounded signal by some number B, i.e. $ |x(t)|<B $ for all $ t $.

Then the response to $ x(t) $ is obviously always bounded as such: $ |y(t)|<B $ for all $ t $.

Thus the given system is stable.

Linearity

Let $ x_1(t) $ be an input to the given system. Then its response is $ y_1(t)=x_1(\sin(t)) $.

Let $ x_2(t) $ be an input to the given system. Then its response is $ y_2(t)=x_2(\sin(t)) $.

Now, let $ x_3(t)=ax_1(t)+bx_2(t) $ be an input to the system, where $ a $ and $ b $ can be any number. Then its response is $ y_2(t)=ax_1(\sin(t))+bx_2(\sin(t))=ay_1(t)+by_2(t) $.

Hence the system is linear.

Time invariance

Let $ x_1(t) $ be an input to the system. Then $ y_1(t)=x_1(\sin(t)) $ is its response.

Now, let $ x_2(t)=x_1(t-t_0) $ be an input to the system, where $ t_0 $ can be any number. Then, $ y_2(t)=x_1(\sin(t-t_0))=y_1(t-t_0) $.

Hence the system is time invariant.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang