(8 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
 
:<math>
 
:<math>
 +
\begin{bmatrix}
 +
    A & B & C \\
 +
    D & E & F \\
 +
    G & H & I
 +
  \end{bmatrix}
 +
\cdot
 
\begin{bmatrix}
 
\begin{bmatrix}
 
     1 & 0 & 4 \\  
 
     1 & 0 & 4 \\  
 
     0 & 1 & 0 \\
 
     0 & 1 & 0 \\
 
     1 & 0 & 1
 
     1 & 0 & 1
  \end{bmatrix}
 
\cdot
 
\begin{bmatrix}
 
    A & B & C \\
 
    D & E & F \\
 
    G & H & I
 
 
   \end{bmatrix}
 
   \end{bmatrix}
 
=
 
=
Line 27: Line 27:
 
<br>
 
<br>
 
Thus we have
 
Thus we have
A+4G=2 <br>
+
A+C=2 <br>
B+4H=0 <br>
+
B=0 <br>
C+4I=0 <br>
+
4A+C=0 <br>
D=0 <br>
+
D+F=0 <br>
 
E=1 <br>
 
E=1 <br>
F=0 <br>
+
4D+F=0 <br>
A+G=0 <br>
+
G+I=0 <br>
B+H=0 <br>
+
H=0 <br>
C+I=3 <br>
+
4G+I=3 <br>
 
and so
 
and so
 +
A=<math>-\frac{2}{3}</math> <br>
 +
C=<math>\frac{8}{3}</math> <br>
 
D=0 <br>
 
D=0 <br>
E=1 <br>
 
 
F=0 <br>
 
F=0 <br>
A=B=-2/3 <br>
+
G=1<br>
G=H=2/3 <br>
+
 
I=-1 <br>
 
I=-1 <br>
C=4 <br>
 
 
i.e.
 
i.e.
  
Line 49: Line 48:
 
:<math>
 
:<math>
 
\begin{bmatrix}
 
\begin{bmatrix}
     -\frac{2}{3} & -\frac{2}{3} & 4 \\  
+
     -\frac{2}{3} & 0 & \frac{8}{3} \\  
 
     0 & 1 & 0 \\
 
     0 & 1 & 0 \\
     \frac{2}{3} & \frac{2}{3} & -1
+
     1 & 0 & -1
 
   \end{bmatrix}
 
   \end{bmatrix}
 
</math>
 
</math>
Line 58: Line 57:
 
:<math>
 
:<math>
 
\begin{bmatrix}
 
\begin{bmatrix}
     \frac{1}{2} & -1 & 2 \\  
+
     \frac{1}{2} & 0 & \frac{4}{3} \\  
 
     0 & 1 & 0 \\
 
     0 & 1 & 0 \\
     \frac{1}{3} & 0 & \frac{1}{3}
+
     \frac{1}{2} & 0 & \frac{1}{3}
 
   \end{bmatrix}
 
   \end{bmatrix}
 
</math><br>
 
</math><br>
So(2,23,5) --> BWE
+
So(2,23,3) --> (5,23,2) --> EWB

Latest revision as of 15:34, 18 September 2008

1. Bob needs to calculate the inverse of the secret matrix, and multiply it by the code given by Alice to get a vector. Then replaces each three entries by its corresponding letter in the alphabet.

2.Eve can get the secret matrix through calculation.

$ \begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} $


Thus we have A+C=2
B=0
4A+C=0
D+F=0
E=1
4D+F=0
G+I=0
H=0
4G+I=3
and so A=$ -\frac{2}{3} $
C=$ \frac{8}{3} $
D=0
F=0
G=1
I=-1
i.e.


$ \begin{bmatrix} -\frac{2}{3} & 0 & \frac{8}{3} \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} $

3. The inverse matrix is

$ \begin{bmatrix} \frac{1}{2} & 0 & \frac{4}{3} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{3} \end{bmatrix} $

So(2,23,3) --> (5,23,2) --> EWB

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009