Line 37: Line 37:
 
4G+I=3 <br>
 
4G+I=3 <br>
 
and so
 
and so
A=-\frac{2}{3} <br>
+
A=<math>-\frac{2}{3}</math> <br>
C=\frac{8}{3} <br>
+
C=<math>\frac{8}{3}</math> <br>
 
D=0 <br>
 
D=0 <br>
 
F=0 <br>
 
F=0 <br>
Line 48: Line 48:
 
:<math>
 
:<math>
 
\begin{bmatrix}
 
\begin{bmatrix}
     -\frac{2}{3} & -\frac{2}{3} & 4 \\  
+
     -\frac{2}{3} & 0 & \frac{8}{3} \\  
 
     0 & 1 & 0 \\
 
     0 & 1 & 0 \\
     \frac{2}{3} & \frac{2}{3} & -1
+
     1 & 0 & -1
 
   \end{bmatrix}
 
   \end{bmatrix}
 
</math>
 
</math>

Revision as of 15:29, 18 September 2008

1. Bob needs to calculate the inverse of the secret matrix, and multiply it by the code given by Alice to get a vector. Then replaces each three entries by its corresponding letter in the alphabet.

2.Eve can get the secret matrix through calculation.

$ \begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} $


Thus we have A+C=2
B=0
4A+C=0
D+F=0
E=1
4D+F=0
G+I=0
H=0
4G+I=3
and so A=$ -\frac{2}{3} $
C=$ \frac{8}{3} $
D=0
F=0
G=1
I=-1
i.e.


$ \begin{bmatrix} -\frac{2}{3} & 0 & \frac{8}{3} \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} $

3. The inverse matrix is

$ \begin{bmatrix} \frac{1}{2} & -1 & 2 \\ 0 & 1 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} \end{bmatrix} $

So(2,23,3) --> (1,23,1) --> AWE

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett