Line 6: Line 6:
  
 
:<math>
 
:<math>
\begin{bmatrix}
 
    1 & 0 & 4 \\
 
    0 & 1 & 0 \\
 
    1 & 0 & 1
 
  \end{bmatrix}
 
\cdot
 
 
\begin{bmatrix}
 
\begin{bmatrix}
 
     A & B & C \\  
 
     A & B & C \\  
Line 17: Line 11:
 
     G & H & I
 
     G & H & I
 
   \end{bmatrix}
 
   \end{bmatrix}
 +
cdot
 +
\begin{bmatrix}
 +
    1 & 0 & 4 \\
 +
    0 & 1 & 0 \\
 +
    1 & 0 & 1
 +
  \end{bmatrix}
 +
\
 
=
 
=
 
\begin{bmatrix}
 
\begin{bmatrix}

Revision as of 15:21, 18 September 2008

1. Bob needs to calculate the inverse of the secret matrix, and multiply it by the code given by Alice to get a vector. Then replaces each three entries by its corresponding letter in the alphabet.

2.Eve can get the secret matrix through calculation.

$ \begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} cdot \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \ = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} $


Thus we have A+4G=2
B+4H=0
C+4I=0
D=0
E=1
F=0
A+G=0
B+H=0
C+I=3
and so D=0
E=1
F=0
A=B=-2/3
G=H=2/3
I=-1
C=4
i.e.


$ \begin{bmatrix} -\frac{2}{3} & -\frac{2}{3} & 4 \\ 0 & 1 & 0 \\ \frac{2}{3} & \frac{2}{3} & -1 \end{bmatrix} $

3. The inverse matrix is

$ \begin{bmatrix} \frac{1}{2} & -1 & 2 \\ 0 & 1 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} \end{bmatrix} $

So(2,23,3) --> (1,23,1) --> AWE

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood