(New page: == The Basics of Linearity == According to the definition of linearity given in class, x1(t) -> system -> y1(t) -> *a -> ay1(t) } } -> + -> ay1(t) + by2(t...)
 
 
(10 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
                                 } -> + -> ay1(t) + by2(t)
 
                                 } -> + -> ay1(t) + by2(t)
 
x2(t) -> system -> y2(t) -> *b -> by2(t)  }
 
x2(t) -> system -> y2(t) -> *b -> by2(t)  }
 +
 +
 +
 +
 +
Now, according to the problem statement, and let a=b=1 since it is not specified in the problem,
 +
 +
 +
exp(2jt) -> system -> texp(-2jt) -> *1 -> texp(-2jt)  }
 +
                                } -> + -> texp(-2jt) + texp(2jt)
 +
exp(-2jt) -> system -> texp(2jt) -> *1 ->  texp(2jt)  }
 +
 +
 +
 +
 +
I've decided to use Euler's formula to change the exponential into a sum of sines and cosines.
 +
 +
exp(2jt)=cos(2t)+jsin(2t)
 +
exp(-2jt)=cos(2t)-jsin(2t)
 +
 +
After putting each of these into the system,
 +
 +
 +
 +
cos(2t)+jsin(2t) -> system -> t(cos(2t)-jsin(2t)) -> *1 -> t(cos(2t)-jsin(2t))  }
 +
                                                  } -> + -> t(cos(2t)-jsin(2t)) + t(cos(2t)-jsin(2t))
 +
cos(2t)-jsin(2t) -> system -> t(cos(2t)+jsin(2t)) -> *1 ->  t(cos(2t)-jsin(2t))  }
 +
 +
 +
 +
Next, t(cos(2t)-jsin(2t)) + t(cos(2t)-jsin(2t)) = 2tcos(2t), which is the response to 2cos(t).  From here, it is a simple matter of dividing by 2.
 +
 +
 +
 +
The system's response to cos(2t) is tcos(2t).

Latest revision as of 07:47, 17 September 2008

The Basics of Linearity

According to the definition of linearity given in class,

x1(t) -> system -> y1(t) -> *a -> ay1(t) }

                               } -> + -> ay1(t) + by2(t)

x2(t) -> system -> y2(t) -> *b -> by2(t) }



Now, according to the problem statement, and let a=b=1 since it is not specified in the problem,


exp(2jt) -> system -> texp(-2jt) -> *1 -> texp(-2jt) }

                               } -> + -> texp(-2jt) + texp(2jt)

exp(-2jt) -> system -> texp(2jt) -> *1 -> texp(2jt) }



I've decided to use Euler's formula to change the exponential into a sum of sines and cosines.

exp(2jt)=cos(2t)+jsin(2t) exp(-2jt)=cos(2t)-jsin(2t)

After putting each of these into the system,


cos(2t)+jsin(2t) -> system -> t(cos(2t)-jsin(2t)) -> *1 -> t(cos(2t)-jsin(2t)) }

                                                  } -> + -> t(cos(2t)-jsin(2t)) + t(cos(2t)-jsin(2t))

cos(2t)-jsin(2t) -> system -> t(cos(2t)+jsin(2t)) -> *1 -> t(cos(2t)-jsin(2t)) }


Next, t(cos(2t)-jsin(2t)) + t(cos(2t)-jsin(2t)) = 2tcos(2t), which is the response to 2cos(t). From here, it is a simple matter of dividing by 2.


The system's response to cos(2t) is tcos(2t).

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett