(2 intermediate revisions by the same user not shown)
Line 15: Line 15:
 
While cos(2t) function can be found with this equation:
 
While cos(2t) function can be found with this equation:
 
<br>
 
<br>
<math>\frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} =</math><br><math> \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)}) = cos{(2t)}</math><br>
+
<math>\frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} =</math><br><math> \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)}) = cos{(2t)}</math><br><br>
 
|<br>
 
|<br>
 
|<br>
 
|<br>
 
|<br>
 
|<br>
V<br>
+
V<br><br>
<math>System \,</math><br>
+
<math>System \,</math><br><br>
 
|<br>
 
|<br>
 
|<br>
 
|<br>
 
|<br>
 
|<br>
 
V<br>
 
V<br>
 
+
<br>
<math>\frac{1}{2}(t*{(cos{(2t)} - jsin{(2t)})}) + \frac{1}{2}t*{(cos{(2t)} + jsin{(2t)})} = \frac{1}{2}tcos{(2t)} + \frac{1}{2}tcos{(2t)} = tcos({(2t)}}</math><br>
+
<math>\frac{1}{2}(t*{(cos{(2t)} - jsin{(2t)})}) + \frac{1}{2}t*{(cos{(2t)} + jsin{(2t)})} = \frac{1}{2}tcos{(2t)} + \frac{1}{2}tcos{(2t)} = tcos(2t)</math><br>
 
<br>
 
<br>

Latest revision as of 10:39, 16 September 2008

Since $ e^{2jt} \rightarrow system \rightarrow te^{-2jt}\! $
$ e^{-2jt} \rightarrow system \rightarrow te^{2jt}\! $

and using euler formula, we can replace exponent expressions with

Euler's formula: $ e^{iy}=cos(y)+isin(y)\, $


They will change into:
$ e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\, $
$ e^{(-2jt)} = cos{(2t)} - jsin{(2t)} --> system --> t*{(cos{(2t)} + jsin{(2t)})}\, $

It indicates that the system changes the expression on the middle of cos and sin. While cos(2t) function can be found with this equation:
$ \frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} = $
$ \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)}) = cos{(2t)} $

|
|
|
V

$ System \, $

|
|
|
V

$ \frac{1}{2}(t*{(cos{(2t)} - jsin{(2t)})}) + \frac{1}{2}t*{(cos{(2t)} + jsin{(2t)})} = \frac{1}{2}tcos{(2t)} + \frac{1}{2}tcos{(2t)} = tcos(2t) $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett